22.如图.已知△ABC的顶点坐标分别为A.(1)将A.B.C三点的横坐标和纵坐标都乘以2.得到点A'.B'.C'.作出△A'B'C',(2)将A.B.C三点的横坐标和纵坐标都乘以-2.得到点A''.B''.C''.作出△A''B''C'',(3)△ABC与△A'B'C'位似图形吗?如果是位似图形.那么位似中心是哪一个点?位似比是多少? 查看更多

 

题目列表(包括答案和解析)

(本题满分11分)某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为且过顶点C(0,5)(长度单位:m)

1.(1)直接写出c的值;

   2.(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5 m的地毯,地毯的价格为20元/m2,求购买地毯需多少元?

   3.(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右测上),并铺设斜面EG.已知矩形EFGH的周长为27.5m,求点G的坐标.

 

查看答案和解析>>

(本题满分12分)已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点BCE)、F在同一条直线上.∠ACB = ∠EDF= 90°,∠DEF = 45°,AC =6cm,BC = 6 cm,EF = 12cm.

如图(2),△DEF从图(1)的位置出发,以1 cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2 cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动.DEAC相交于点Q,连接PQ,设移动时间为t(s).解答下列问题:

(1)当t为何值时,点A在线段PQ的垂直平分线上?

(2)当t为何值时,△PQE是直角三角形?

(3)连接PE,设四边形APEC的面积为y(cm2),求yt之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由.

(4)是否存在某一时刻t,使PQF三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由

 

查看答案和解析>>

(本题满分11分)某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为且过顶点C(0,5)(长度单位:m)

1.(1)直接写出c的值;

    2.(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5 m的地毯,地毯的价格为20元/m2,求购买地毯需多少元?

    3.(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右测上),并铺设斜面EG.已知矩形EFGH的周长为27.5m,求点G的坐标.

 

查看答案和解析>>

(本题满分12分)已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点BCE)、F在同一条直线上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC =6cm,BC = 6 cm,EF = 12cm.

如图(2),△DEF从图(1)的位置出发,以1 cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2 cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动.DEAC相交于点Q,连接PQ,设移动时间为t(s).解答下列问题:

(1)当t为何值时,点A在线段PQ的垂直平分线上?

(2)当t为何值时,△PQE是直角三角形?

(3)连接PE,设四边形APEC的面积为y(cm2),求yt之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由.

(4)是否存在某一时刻t,使PQF三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由

 

查看答案和解析>>

(本小题满分9分)

如图,已知二次函数的图象与x轴相交于点A、C,与y轴交于点B,A(,0),且△AOB~△BOC。

(1)求C点坐标、∠ABC的度数及二次函数的关系式;

(2)在线段AC上是否存在点M(m,0),使得以线段BM为直径的圆与边BC交于P点(与点B不同),且以点P、C、O为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由

 

查看答案和解析>>


同步练习册答案