7.分别等于1和时.代数式相应的两个的值A.相等 B.同号 C.互为相反数 D.互为倒数 查看更多

 

题目列表(包括答案和解析)

分别等于1和时,代数式相应的两个的值(    )

A.相等                      B.同号                       C.互为相反数            D.互为倒数

查看答案和解析>>

如图,在直角坐标系中,是原点,三点的坐标分别,四边形是梯形,点同时从原点出发,分别作匀速运动,其中点沿向终点运动,速度为每秒个单位,点沿向终点运动,当这两点有一点到达自己的终点时,另一点也停止运动.

(1)求直线的解析式.

(2)设从出发起,运动了秒.如果点的速度为每秒个单位,试写出点的坐标,并写出此时 的取值范围.

(3)设从出发起,运动了秒.当两点运动的路程之和恰好等于梯形的周长的一半,这时,直线能否把梯形的面积也分成相等的两部分,如有可能,请求出的值;如不可能,请说明理由.

【解析】(1)根据待定系数法就可以求出直线OC的解析式(2)本题应分Q在OC上,和在CB上两种情况进行讨论.即0≤t≤5和5<t≤10两种情况(3)P、Q两点运动的路程之和可以用t表示出来,梯形OABC的周长就可以求得.当P、Q两点运动的路程之和恰好等于梯形OABC的周长的一半,就可以得到一个关于t的方程,可以解出t的值.梯形OABC的面积可以求出,梯形OCQP的面积可以用t表示出来.把t代入可以进行检验

 

查看答案和解析>>

如图,在直角坐标系中,是原点,三点的坐标分别,四边形是梯形,点同时从原点出发,分别作匀速运动,其中点沿向终点运动,速度为每秒个单位,点沿向终点运动,当这两点有一点到达自己的终点时,另一点也停止运动.

(1)求直线的解析式.

(2)设从出发起,运动了秒.如果点的速度为每秒个单位,试写出点的坐标,并写出此时 的取值范围.

(3)设从出发起,运动了秒.当两点运动的路程之和恰好等于梯形的周长的一半,这时,直线能否把梯形的面积也分成相等的两部分,如有可能,请求出的值;如不可能,请说明理由.

【解析】(1)根据待定系数法就可以求出直线OC的解析式(2)本题应分Q在OC上,和在CB上两种情况进行讨论.即0≤t≤5和5<t≤10两种情况(3)P、Q两点运动的路程之和可以用t表示出来,梯形OABC的周长就可以求得.当P、Q两点运动的路程之和恰好等于梯形OABC的周长的一半,就可以得到一个关于t的方程,可以解出t的值.梯形OABC的面积可以求出,梯形OCQP的面积可以用t表示出来.把t代入可以进行检验

 

查看答案和解析>>

直线l:y=-
34
x+3分别交x轴、y轴于B、A两点,等腰直角△CDM斜边落在x轴上,且CD=6,如图1所示.若直线l以每秒3个单位向上作匀速平移运动,同时点C从(6,0)开始以每秒2个单位的速度向右作匀速平移运动,如图2所示,设移动后直线l运动后分别交x轴、y轴于Q、P两点,以OP、OQ为边作如图矩形OPRQ.设运动时间为t秒.
(1)求运动后点M、点Q的坐标(用含t的代数式表示);
(2)若设矩形OPRQ与运动后的△CDM的重叠部分面积为S,求S与t的函数关系式,并写出t相应的取值范围;
(3)若直线l和△CDM运动后,直线l上存在点T使∠OTC=90°,则当在线段PQ上符合条件的点T有且只有两个时,求t的取值范围.
精英家教网

查看答案和解析>>

直线l:y=-数学公式x+3分别交x轴、y轴于B、A两点,等腰直角△CDM斜边落在x轴上,且CD=6,如图1所示.若直线l以每秒3个单位向上作匀速平移运动,同时点C从(6,0)开始以每秒2个单位的速度向右作匀速平移运动,如图2所示,设移动后直线l运动后分别交x轴、y轴于Q、P两点,以OP、OQ为边作如图矩形OPRQ.设运动时间为t秒.
(1)求运动后点M、点Q的坐标(用含t的代数式表示);
(2)若设矩形OPRQ与运动后的△CDM的重叠部分面积为S,求S与t的函数关系式,并写出t相应的取值范围;
(3)若直线l和△CDM运动后,直线l上存在点T使∠OTC=90°,则当在线段PQ上符合条件的点T有且只有两个时,求t的取值范围.

查看答案和解析>>


同步练习册答案