(1)求证:D是BC的中点, (2)如果AB=AC.试判断四边形AFBD的形状.并证明你的结论. 查看更多

 

题目列表(包括答案和解析)

□ABCD中,AB⊥AC,AB=1,BC=,对角线BD、AC交于点O. 将直线AC绕点O顺时针旋转分别交BC、AD于点E、F. (∠AOF为旋转角)
(1)试说明在旋转过程中,AF与CE总保持相等;

(2)证明:当∠AOF=90°时,四边形ABEF是平行四边形;

(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能请说明理由;如果能,求出此时AC绕点O顺时针旋转的角度.

查看答案和解析>>

□ABCD中,AB⊥AC,AB=1,BC=,对角线BD、AC交于点O. 将直线AC绕点O顺时针旋转分别交BC、AD于点E、F. (∠AOF为旋转角)

(1)试说明在旋转过程中,AF与CE总保持相等;

(2)证明:当∠AOF=90°时,四边形ABEF是平行四边形;

(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能请说明理由;如果能,求出此时AC绕点O顺时针旋转的角度.

 

查看答案和解析>>

□ABCD中,AB⊥AC,AB=1,BC=,对角线BD、AC交于点O. 将直线AC绕点O顺时针旋转分别交BC、AD于点E、F. (∠AOF为旋转角)
(1)试说明在旋转过程中,AF与CE总保持相等;

(2)证明:当∠AOF=90°时,四边形ABEF是平行四边形;

(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能请说明理由;如果能,求出此时AC绕点O顺时针旋转的角度.

查看答案和解析>>

22、在△ABC中,AB=AC,∠A=36°,把像这样的三角形叫做黄金三角形.
(1)请你设计三种不同的分法,将黄金三角形ABC分割成三个等腰三角形,使得分割成的三角形中含有两个黄金三角形(画图工具不限,要求画出分割线段;标出能够说明不同分法所得三角形的内角度数,不要求写画法,不要求证明.分别画在图1,图2,图3中)
注:两种分法只要有一条分割线段位置不同,就认为是两种不同的分法.

(2)如图4中,BF平分∠ABC交AC于F,取AB的中点E,连接 EF并延长交 BC的延长线于M.试判断CM与AB之间的数量关系?只需说明结果,不用证明.
答:CM与AB之间的数量关系是
CM=AB

查看答案和解析>>

在△ABC中,AB=AC,∠A=36°,把像这样的三角形叫做黄金三角形.
(1)请你设计三种不同的分法,将黄金三角形ABC分割成三个等腰三角形,使得分割成的三角形中含有两个黄金三角形(画图工具不限,要求画出分割线段;标出能够说明不同分法所得三角形的内角度数,不要求写画法,不要求证明.分别画在图1,图2,图3中)
注:两种分法只要有一条分割线段位置不同,就认为是两种不同的分法.


(2)如图4中,BF平分∠ABC交AC于F,取AB的中点E,连接 EF并延长交 BC的延长线于M.试判断CM与AB之间的数量关系?只需说明结果,不用证明.
答:CM与AB之间的数量关系是______.

查看答案和解析>>


同步练习册答案