题目列表(包括答案和解析)
如图,点E在AC延长线上,下列条件中能判断AB∥CD的是( )
A.∠3=∠4
B.∠D+∠ACD=180°
C.∠D=∠DCE
D.∠1=∠2
如图,点E在AC延长线上,下列条件中能判断AB∥CD的是( )
A.∠3=∠4
B.∠D+∠ACD=180°
C.∠D =∠DCE
D.∠1=∠2
如图1,在△ABC中,当∠C=90°,AC=BC时,此时,我们称这种特殊的三角形为等腰直角三角形。
(1)如图2,△ABC和△CDE都是等腰直角三角形,且∠ACB=∠DCE=90°,请连接AD,BE,并请你猜一猜AD与BE是否相等?
答:______。
(2)如果图2中的AD=BE,请你利用所学知识说明理由。
【解析】根据等腰直角三角形的性质得到∠ACB=∠DCE=90°,AC=BC,CD=EC,然后利用SAS判定△ACD≌△BCE.从而得出AD=BE
如图1,在△ABC中,当∠C=90°,AC=BC时,此时,我们称这种特殊的三角形为等腰直角三角形。
(1)如图2,△ABC和△CDE都是等腰直角三角形,且∠ACB=∠DCE=90°,请连接AD,BE,并请你猜一猜AD与BE是否相等?
答:______。
(2)如果图2中的AD=BE,请你利用所学知识说明理由。
【解析】根据等腰直角三角形的性质得到∠ACB=∠DCE=90°,AC=BC,CD=EC,然后利用SAS判定△ACD≌△BCE.从而得出AD=BE
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com