(Ⅱ)由题意知一周的销售量为2吨.3吨和4吨的频率分别为0.2.0.5和0.3.故所求的概率为 (?).????????????????????????????????????????????????????????????????????????????? 8分 (?).??????????????????????????????????????????????????????? 12分 19. (Ⅰ)证明:平面PQEF和平面PQGH互相垂直,(Ⅱ)证明:截面PQEF和截面PQGH面积之和是定值.并求出这个值,(Ⅲ)若.求与平面PQEF所成角的正弦值. 本小题主要考查空间中的线面关系和面面关系.解三角形等基础知识.考查空间想象能力与逻辑思维能力.满分12分. 解法一:(Ⅰ)证明:在正方体中...又由已知可得...所以..所以平面.所以平面和平面互相垂直.?????????????????????????????????????????????????????????????????? 4分知.又截面PQEF和截面PQGH都是矩形.且PQ=1.所以截面PQEF和截面PQGH面积之和是.是定值.?????????????????????????????????????????????????????????????????????? 8分(Ⅲ)解:设交于点.连结. 所以为与平面所成的角.因为.所以分别为...的中点.可知..所以.???????????????????????????????????????????????????????????????????????????????? 12分解法二:以D为原点.射线DA.DC.DD′分别为x.y.z轴的正半轴建立如图的空间直角坐标系D-xyz.由已知得.故 ......(Ⅰ)证明:在所建立的坐标系中.可得...因为.所以是平面PQEF的法向量.因为.所以是平面PQGH的法向量.因为.所以.所以平面PQEF和平面PQGH互相垂直.-4分(Ⅱ)证明:因为.所以.又.所以PQEF为矩形.同理PQGH为矩形.在所建立的坐标系中可求得..所以.又.所以截面PQEF和截面PQGH面积之和为.是定值.???????????????????????????? 8分知是平面的法向量.由为中点可知.分别为..的中点.所以..因此与平面所成角的正弦值等于.?????????????????????????????????????????????????????????????????????????????????????????? 12分 查看更多

 

题目列表(包括答案和解析)

已知m>1,直线,椭圆C:分别为椭圆C的左、右焦点.

(Ⅰ)当直线过右焦点时,求直线的方程;

(Ⅱ)设直线与椭圆C交于A、B两点,△A、△B的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.[

【解析】第一问中因为直线经过点,0),所以,得.又因为m>1,所以,故直线的方程为

第二问中设,由,消去x,得

则由,知<8,且有

由题意知O为的中点.由可知从而,设M是GH的中点,则M().

由题意可知,2|MO|<|GH|,得到范围

 

查看答案和解析>>

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1

(1)   求曲线C的方程.

(2)   是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有?若存在,求出m的取值范围,若不存在,请说明理由.

【解析】(1)由题意知曲线C上的点到F(1,0)的距离与到直线x=-1的距离相等.

可确定其轨迹是抛物线,即可求出其方程为y2=4x.

(2)设过点M的直线方程为x=ty+m,然后与抛物线方程联立,消去x,利用韦达定理表示出,再证明其小于零即可.

 

查看答案和解析>>

10、如图,一个“凸轮”放置于直角坐标系X轴上方,其“底端”落在远点O处,一顶点及中心M在Y轴的正半轴上,它的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成

今使“凸轮”沿X轴正向滚动过程中,“凸轮”每时每刻都有一个“最高点”,其中心也在不断移动位置,则在“凸轮”滚动一周的过程中,将其“最高点”和“中心点”所形成的图形按上、下放置,应大致为(  )

查看答案和解析>>

如图,一个“凸轮”放置于直角坐标系X轴上方,其“底端”落在原点O处,一顶点及

中心M在Y轴正半轴上,它的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.

今使“凸轮”沿X轴正向滚动前进,在滚动过程中“凸轮”每时每刻都有一个“最高点”,其中心也在不断移动位置,则在“凸轮”滚动一周的过程中,将其“最高点”和“中心点”所形成的图形按上、下放置,应大致为(   )

 

查看答案和解析>>


同步练习册答案