某公司生产的一种时令商品每件成本为20元,经过市场调研发现,这种商品在未来20天内的日销售量m(件)与时间t(天)的关系如下表:
| 时间t(天) |
1 |
3 |
6 |
10 |
36 |
… |
| 日销售量m(件) |
94 |
90 |
84 |
76 |
24 |
… |
未来20天内每天的价格y(元/件)与时间t(天)的函数关系式为
y =t+25(1≤t≤20且t为整数).下面我们就来研究销售这种商品的有关问题:
(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;
(2)设未来20天日销售利润为p (元),请写出p (元) 与t(天)之间的关系式;并预测未来20天中哪一天的日销售利润最大,最大日销售利润是多少?
(3)若该公司预计日销售利润不低于560元,请借助(2)小题中的函数图象确定时间的取值范围,持续了多少天?
(4)在实际销售的20天中,该公司决定每销售一件商品就捐赠a元利润(a<5)给希望工程.公司通过销售记录发现,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.