中所得椭圆上的动点.求线段的中点的轨迹方程. 查看更多

 

题目列表(包括答案和解析)

设F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右两个焦点.
(1)若椭圆C上的点A(1,
3
2
)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程.

查看答案和解析>>

F1F2分别为椭圆C =1(ab>0)的左、右两个焦点.

(1)若椭圆C上的点A(1,)到F1F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;

(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;

查看答案和解析>>

(14分)设F1、F2分别为椭圆C: =1(a>b>0)的左、右两个焦点.

(1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;

(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;

(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值.试对双曲线写出具有类似特性的性质,并加以证明.

 

查看答案和解析>>

(14分)设F1F2分别为椭圆C =1(ab>0)的左、右两个焦点.

(1)若椭圆C上的点A(1,)到F1F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;

(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;

(3)已知椭圆具有性质:若MN是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PMPN的斜率都存在,并记为kPMkPN时,那么kPMkPN之积是与点P位置无关的定值.试对双曲线写出具有类似特性的性质,并加以证明.

 

查看答案和解析>>

设F1、F2分别为椭圆C:(a>b>0)的左、右两个焦点。
(1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值,试对双曲线写出具有类似特性的性质,并加以证明。

查看答案和解析>>

一、选择题:BDCCB   BADCA

二、填空题:    11.  2            12.     

13.       14.

三、解答题:

15、解:依题意得:(1)=0,解之得m=0或m=3

∴当m=0或m=3时,复数是实数; ……………4分

(2)≠0,解之得m≠0且m≠3

∴当m≠0且m≠3时,复数是虚数;……………8分

(3),解之得m=3

∴当m=3时,复数是纯虚数.      ……………12分

16、解:(1)∵      ∴  两边平方相加,

   即  .       ………………4分

∴曲线是长轴在x轴上且为10,短轴为8,中心在原点的椭圆.   ………6分

(2)∵∴由代入

                    ……………10分

∴它表示过(0,)和(1, 0)的一条直线.               …………12分

 

 

 

 

 

17、解:(Ⅰ),                                  ………1分

.                               ………2分

            .                            ………4分

        椭圆的方程为,                       ………5分

因为                               ………6分

所以离心率.                           ………8分

(Ⅱ)设的中点为,则点.           ………10分

又点K在椭圆上,则中点的轨迹方程为  ………14分

 

 

18、解:(1)列出2×2列联表

 

 

说谎

不说谎

合计

女生

15

5

20

男生

10

20

30

合计

25

25

50

…………6分

(2)假设H0 "说谎与性别无关",则随机变量K2的观测值:

                  ……………10分

,而             ……………………12分

所以有99.5%的把握认为"说谎与性别有关".          ……………14分

 

 

 

 

 

 

 

 

 

 

 

 

19、解:(1)

………………4分

(2),0×5+1×7+2×8+3×11+4×19=132,

         …………8分

 

故Y关于x的线性回归方程为 y=3.2x+3.6         ………10分

(3)x=5,y=196(万)

据此估计2005年.该 城市人口总数196(万)            ………14分

 

 

 

 

 

 

 

 

 

 

 

 

20、解:(1)设椭圆的半焦距为,依题意   ………2分

 

∴  所求椭圆方程为.         ………4分

 

(2)设

轴时,.                                ………5分

轴不垂直时,设直线的方程为.        ………6分

由已知,得.                 ………7分

代入椭圆方程,整理得,………8分

.………10分

.     ………12分

当且仅当,即时等号成立.当时,

综上所述.                                      ………13分

最大时,面积取最大值.………14分

 

 


同步练习册答案