的条件下.当为何值时.以为顶点的三角形为等腰三角形.并求出相应的时刻点的坐标. 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,以△ABC的边AC为直径的半圆交AB于D,三边长a,b,c能使二次函数y=
1
2
(c+a)x2-bx+
1
2
(c-a)
的顶点在x轴上,且a是方程z2+z-20=0的一个根.
(1)证明:∠ACB=90°;
(2)若设b=2x,弓形面积S弓形AED=S1,阴影部分面积为S2,求(S2-S1)与x的函数关系式;
(3)在(2)的条件下,当b为何值时,(S2-S1)最大?

查看答案和解析>>

如图,以△ABC的边AC为直径的半圆交AB于D,三边长a,b,c能使二次函数数学公式的顶点在x轴上,且a是方程z2+z-20=0的一个根.
(1)证明:∠ACB=90°;
(2)若设b=2x,弓形面积S弓形AED=S1,阴影部分面积为S2,求(S2-S1)与x的函数关系式;
(3)在(2)的条件下,当b为何值时,(S2-S1)最大?

查看答案和解析>>

如图,以△ABC的边AC为直径的半圆交AB于D,三边长a,b,c能使二次函数的顶点在x轴上,且a是方程z2+z-20=0的一个根.
(1)证明:∠ACB=90°;
(2)若设b=2x,弓形面积S弓形AED=S1,阴影部分面积为S2,求(S2-S1)与x的函数关系式;
(3)在(2)的条件下,当b为何值时,(S2-S1)最大?

查看答案和解析>>

如图,以△ABC的边AC为直径的半圆交AB于D,三边长a,b,c能使二次函数y=
1
2
(c+a)x2-bx+
1
2
(c-a)
的顶点在x轴上,且a是方程z2+z-20=0的一个根.
(1)证明:∠ACB=90°;
(2)若设b=2x,弓形面积S弓形AED=S1,阴影部分面积为S2,求(S2-S1)与x的函数关系式;
(3)在(2)的条件下,当b为何值时,(S2-S1)最大?

查看答案和解析>>

如图,直角梯形ABCD,AD∥BC,∠B=90°,AD=6,AB=4,BC=9.
(1)CD的长为______.
(2)点P从点B出发,以每秒1个单位的速度沿着边BC向点C运动,连接DP.设点P运动的时间为t秒,则当t为何值时,△PDC为等腰三角形?
(3)在(2)的条件下,点Q同时从点B出发,以每秒4个单位的速度沿着边BA、AD向点D运动,当点Q到达终点时两点同时停止运动.是否存在某一时刻t,使得以点P、Q、D、C为顶点的四边形是平行四边形?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案