22.如图.小唐同学正在操场上放风筝.风筝从A处起飞.几分钟后便飞达C处.此时.在AQ延长线上B处的小宋同学.发现自己的位置与风筝和旗杆PQ的顶点P在同一直线上.(1)已知旗杆高为10米.若在B处测得旗杆顶点P的仰角为30°.A处测得点P的仰角为45°.试求A.B之间的距离,(2)此时.在A处背向旗杆又测得风筝的仰角为75°.若绳子在空中视为一条线段.求绳子AC约为多少? 查看更多

 

题目列表(包括答案和解析)

(本小题满分10分)如图1,点C将线段AB分成两部分,如果AB : AC="AC" : BC,那么称点C为线段的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线将一个面积为S的图形分成两部分,这两部分的面积分别为S1: S2,如果S : S1= S1: S2,,那么称直线为该图形的黄金分割线.
(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?为什么?
(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?
(3)研究小组探究发现:在(1)中,过点C任作AE交AB于E,再过点D作,交 AC于点F,连接EF(如图3),则直线EF是△ABC的黄金分割线.请说明理由.
(4)如图4,点E是ABCD的边AB的黄金分割点,过点E作,交DC于点F,显然直线EF是ABCD的黄金分割线.请你再画一条ABCD的黄金分割线,使它不经过ABCD各边黄金分割点(保留必要的辅助线).

查看答案和解析>>

(本小题满分10分)

如图14①至图14④中,两平行线ABCD音的距离均为6,点MAB上一定点.

思考:如图14①中,圆心为O的半圆形纸片在AB、CD之间(包括AB、CD),其直径MN在AB上,MN=8,点P为半圆上一点,设∠MOP=α,当α=________度时,点PCD的距离最小,最小值为____________.

探究一在图14①的基础上,以点M为旋转中心,在ABCD之间顺时针旋转该半圆形纸片,直到不能再转动为止.如图14②,得到最大旋转角∠BMO=_______度,此时点NCD的距离是______________.

探究二将图14①中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点MABCD之间顺时针旋转.

⑴如图14③,当α=60°时,求在旋转过程中,点PCD的最小距离,并请指出旋转角∠BMO的最大值:

⑵如图14④,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.

(参考数据:sin49°=cos41°=tan37°=

            

 

查看答案和解析>>

(本小题满分10分)如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于)的矩形花圃,设花圃一边的长为m,面积为
(1)求的函数关系式;
(2)如果要围成面积为的花圃,的长是多少?
(3)能围成面积比更大的花圃吗?如果能,请求出最大面积;如果不能,请说明理由.

查看答案和解析>>

(本小题满分10分)

如图,某地海岸线可以近似地看作一条直线,两救生员在岸边A处巡查,发现在海中B处有人求救,救生员甲与乙都没有直接从A处游向B处,甲是沿岸边A处跑到离B最近的D处,然后游向B处;乙是沿岸边A处跑到点C处然后游向B处,若两救生员在岸边的行进速度都为6米∕秒,在海水中的行进速度都为2米∕秒,试分析救生员的选择是否正确?谁先到达点B处?(,)

 

查看答案和解析>>

(本小题满分10分)
如图14①至图14④中,两平行线ABCD音的距离均为6,点MAB上一定点.
思考:如图14①中,圆心为O的半圆形纸片在AB、CD之间(包括AB、CD),其直径MN在AB上,MN=8,点P为半圆上一点,设∠MOP=α,当α=________度时,点PCD的距离最小,最小值为____________.
探究一在图14①的基础上,以点M为旋转中心,在ABCD之间顺时针旋转该半圆形纸片,直到不能再转动为止.如图14②,得到最大旋转角∠BMO=_______度,此时点NCD的距离是______________.
探究二将图14①中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点MABCD之间顺时针旋转.
⑴如图14③,当α=60°时,求在旋转过程中,点PCD的最小距离,并请指出旋转角∠BMO的最大值:
⑵如图14④,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.
(参考数据:sin49°=cos41°=tan37°=
            

查看答案和解析>>


同步练习册答案