于点C.且当=0和=4时.y的值相等.直线y=4x-16与这条抛物线相交于两点.其中一点的横坐标是3.另一点是这条抛物线的顶点M. 查看更多

 

题目列表(包括答案和解析)

已知:如图,在平面直角坐标系内,直线y=x上有一点A,AD⊥x轴于D,且AD=3,C是x轴上的一点,CA ⊥AO, 长度等于OD的线段EF在x轴上沿OC方向以1/s的速度向点C运动(运动前EF和OD重合,当F点与C重合时停止运动,包括起点、终点),过E,F分别作OC的垂线交直角边于点P、点Q,连结线段PD,QD,PQ,PQ交线段AD于点M,若设EF运动的时间为t(s),
(1)写出A点坐标( ____,____ ) ;PE= ______(用含t的代数式表示线段), 其中自变量t的取值范围为 ;
(2)是否存在t的值,使得线段PD⊥QD?若存在,请求出相应的t的值,若不存在,请说明理由;
(3)①当t=秒时,线段AM= ______; 
        ②求线段AM关于自变量t的函数解析式,并求出AM的最大值。

查看答案和解析>>

已知:以原点O为圆心,5为半径的半圆与y轴交于A、G两点,AB与半圆相切于点A,点B的坐标为(3,)。(如图1)过半圆上的点C作y轴的垂线,垂足为D.Rt△DOC的面积为
(1)求点C的坐标;
(2)①命题“如图2,以y轴为对称轴的等腰梯形MNPQ与M1N1P1Q1的上底和下底都分别在同一条直线上,NP∥MQ,PQ∥P1Q1,且NP>MQ.设抛物线y=a0x2+h0过点P、Q,抛物线y=a1x2+h1过点P1、Q1,则h0>h1”是真命题.请你以Q(3,5)、P(4,3)和Q1(p,5)、P1(p+1,3)为例进行验证;
②当图1中的线段BC在第一象限时,作线段BC关于y轴对称的线段FE,连接BF、CE,点T是线段BF上的动点(如图3);设K是过T、B、C三点的抛物线y=ax2+bx+c的顶点,求K的纵坐标yK的取值范围.

查看答案和解析>>

如图,抛物线轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当=O和=4时,y的值相等。直线y=4x-16与这条抛物线相交于两点,其中一点的横坐标是3,另一点是这条抛物线的顶点M。

(1)求这条抛物线的解析式;
(2)P为线段OM上一点,过点P作PQ⊥轴于点Q。若点P在线段OM上运动(点P不与点O重合,但可以与点M重合),设OQ的长为t,四边形PQCO的面积为S,求S与t之间的函数关系式及自变量t的取值范围;
(3)随着点P的运动,四边形PQCO的面积S有最大值吗?如果S有最大值,请求出S的最大值并指出点Q的具体位置和四边形PQCO的特殊形状;如果S没有最大值,请简要说明理由;
(4)随着点P的运动,是否存在t的某个值,能满足PO=OC?如果存在,请求出t的值。

查看答案和解析>>

如图,抛物线轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当=O和=4时,y的值相等。直线y=4x-16与这条抛物线相交于两点,其中一点的横坐标是3,另一点是这条抛物线的顶点M。

(1)求这条抛物线的解析式;

(2)P为线段OM上一点,过点P作PQ⊥轴于点Q。若点P在线段OM上运动(点P不与点O重合,但可以与点M重合),设OQ的长为t,四边形PQCO的面积为S,求S与t之间的函数关系式及自变量t的取值范围;

(3)随着点P的运动,四边形PQCO的面积S有最大值吗?如果S有最大值,请求出S的最大值并指出点Q的具体位置和四边形PQCO的特殊形状;如果S没有最大值,请简要说明理由;

(4)随着点P的运动,是否存在t的某个值,能满足PO=OC?如果存在,请求出t的值。

 

查看答案和解析>>

如图,抛物线轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当=O和=4时,y的值相等。直线y=4x-16与这条抛物线相交于两点,其中一点的横坐标是3,另一点是这条抛物线的顶点M。

(1)求这条抛物线的解析式;
(2)P为线段OM上一点,过点P作PQ⊥轴于点Q。若点P在线段OM上运动(点P不与点O重合,但可以与点M重合),设OQ的长为t,四边形PQCO的面积为S,求S与t之间的函数关系式及自变量t的取值范围;
(3)随着点P的运动,四边形PQCO的面积S有最大值吗?如果S有最大值,请求出S的最大值并指出点Q的具体位置和四边形PQCO的特殊形状;如果S没有最大值,请简要说明理由;
(4)随着点P的运动,是否存在t的某个值,能满足PO=OC?如果存在,请求出t的值。

查看答案和解析>>


同步练习册答案