(2)若将三角形沿x轴向右平移a个单位.此时点A恰好落在反比例函数的图像上.求a的值, 查看更多

 

题目列表(包括答案和解析)

(2013•丰台区二模)操作探究:
一动点沿着数轴向右平移5个单位,再向左平移2个单位,相当于向右平移3个单位.用实数加法表示为 5+(-2)=3.
若平面直角坐标系xOy中的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”.规定“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}.
(1)计算:{3,1}+{1,2};
(2)若一动点从点A(1,1)出发,先按照“平移量”{2,1}平移到点B,再按照“平移量”
{-1,2}平移到点C;最后按照“平移量”{-2,-1}平移到点D,在图中画出四边形ABCD,并直接写出点D的坐标;
(3)将(2)中的四边形ABCD以点A为中心,顺时针旋转90°,点B旋转到点E,连结AE、BE若动点P从点A出发,沿△AEB的三边AE、EB、BA平移一周. 请用“平移量”加法算式表示动点P的平移过程.

查看答案和解析>>

如图所示,抛物线y=-(x-m)2的顶点为A,其中m>0.
(1)已知直线l:,将直线l沿x轴向______(填“左”或“右”)平移______个单位(用含m的代数式)后过点A;
(2)设直线l平移后与y轴的交点为B,若动点Q在抛物线对称轴上,问在对称轴左侧的抛物线上是否存在点P,使以P、Q、A为顶点的三角形与△OAB相似,且相似比为2?若存在,求出m的值,并写出所有符合上述条件的P点坐标;若不存在,说明理由.

查看答案和解析>>

如图所示,抛物线y=-(x-m)2的顶点为A,其中m>0.
(1)已知直线l:y=
3
x
,将直线l沿x轴向
 
(填“左”或“右”)平移
 
个单位(用含m的代数式)后过点A;
(2)设直线l平移后与y轴的交点为B,若动点Q在抛物线对称轴上,问在对称轴左侧的抛物线上是否存在点P,使以P、Q、A为顶点的三角形与△OAB相似,且相似比为2?若存在,求出m的值,并写出所有符合上述条件的P点坐标;若不存在,说明理由.精英家教网

查看答案和解析>>

(8分)将抛物线c1y=沿x轴翻折,得到抛物线c2,如图所示.

(1)请直接写出抛物线c2的表达式;
(2)现将抛物线c1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴的交点从左到右依次为AB;将抛物线c2向右也平移m个单位长度,平移后得到的新抛物线的顶点为N,与x轴的交点从左到右依次为DE.
①用含m的代数式表示点A和点E的坐标;
②在平移过程中,是否存在以点AME为顶点的三角形是直角三角形的情形?若存在,请求出此时m的值;若不存在,请说明理由.

查看答案和解析>>

已知二次函数y=ax2+bx+c与x轴只有一个交点,且系数a、b满足条件:
(1)求y=ax2+bx+c解析式;
(2)将y=ax2+bx+c向右平移一个单位,再向下平移一个单位得到函数y=mx2+nx+k,该函数交y轴于点C,交x轴于A、B(点A在点B的右侧),点P是该抛物线上一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.当△ADP是直角三角形时,求点P的坐标;
(3)在问题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案