(1) 求抛物线的解析式,(2) 在抛物线上是否存在一点C.使以BC为直径的圆经过抛物线的顶点A?若不存在说明理由,若存在.求出点C的坐标.并求出此时圆的圆心点P的坐标,小题的结论.你发现B.P.C三点的横坐标之间.纵坐标之间分别有何关系? 查看更多

 

题目列表(包括答案和解析)

 (1)求抛物线的解析式,并求出顶点A的坐标.

(2) 连结AB,平移AB所在的直线,使其经过原点O,得到直线.点上一动点,当△的周长最小时,求点P的坐标.

(3)当△的周长最小时,在直线AB的上方是否存在一点Q,使以A,B,Q为顶点的三角形与△POB相似,若存在,直接写出点Q的坐标;若不存在,说明理由.(规定:点Q的对应顶点不为点O

 

查看答案和解析>>

抛物线y=ax2+bx+c(a<0)交x轴于点A(-1,0)、B(3,0),交y轴精英家教网于点C,顶点为D,以BD为直径的⊙M恰好过点C.
(1)求顶点D的坐标(用a的代数式表示);
(2)求抛物线的解析式;
(3)抛物线上是否存在点P使△PBD为直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

精英家教网抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,已知抛物线的对称轴为x=1,B(3,0),C(0,-3),
(1)求二次函数y=ax2+bx+c的解析式;
(2)在抛物线对称轴上是否存在一点P,使点P到B、C两点距离之差最大?若存在,求出P点坐标;若不存在,请说明理由;
(3)平行于x轴的一条直线交抛物线于M、N两点,若以MN为直径的圆恰好与x轴相切,求此圆的半径.

查看答案和解析>>

抛物线y=(k2-2)x2-4kx+m的对称轴是直线x=2,且它的最低点在直线y=-2x+2上,求:
(1)函数解析式;
(2)若抛物线与x轴交点为A、B与y轴交点为C,求△ABC面积.

查看答案和解析>>

抛物线的解析式y=ax2+bx+c满足如下四个条件:abc=0;a+b+c=3;ab+bc+ca=-4;a精英家教网<b<c.
(1)求这条抛物线的解析式;
(2)设该抛物线与x轴的两个交点分别为A、B(A在B的左边),与y轴的交点为C.P是抛物线上第一象限内的点,AP交y轴于点D,当OD=1.5时,试比较S△AOD与S△DPC的大小.

查看答案和解析>>


同步练习册答案