25.如图.等腰直角三角形纸片ABC中.AC=BC=4.∠ACB=90º.直角边AC在x轴上.B点在第二象限.A(1.0).AB交y轴于E.将纸片过E点折叠使BE与EA所在直线重合.得到折痕EF.再展开还原沿EF剪开得到四边形BCFE.然后把四边形BCFE从E点开始沿射线EA平移.至B点到达A点停止.设平移时间为t(s).移动速度为每秒1个单位长度.平移中四边形BCFE与△AEF重叠的面积为S. 查看更多

 

题目列表(包括答案和解析)

(本题12分)如图甲,两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O.

【小题1】(1)在图甲中,你发现线段AC、BD的数量关系是_______,直线AC、BD相交成____度角;
【小题2】(2)将图甲中的绕点O顺时针旋转,在图乙中作出旋转后的
【小题3】(3)将图甲中的绕点O顺时针旋转一个锐角,得到图丙,这时(1)中的两个结论是否成立?作出判断,并说明理由.若绕点O继续旋转更大的角度时,结论仍然成立吗?作出判断,不必说明理由.

查看答案和解析>>

(本题12分)如图甲,两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O.

【小题1】(1)在图甲中,你发现线段AC、BD的数量关系是_______,直线AC、BD相交成____度角;
【小题2】(2)将图甲中的绕点O顺时针旋转,在图乙中作出旋转后的
【小题3】(3)将图甲中的绕点O顺时针旋转一个锐角,得到图丙,这时(1)中的两个结论是否成立?作出判断,并说明理由.若绕点O继续旋转更大的角度时,结论仍然成立吗?作出判断,不必说明理由.

查看答案和解析>>

(本题12分)在梯形ABCD中,AB∥CD,∠BCD=90,且AB=1,BC=2,tan∠ADC=2;对角线相交于O点,等腰直角三角板的直角顶点落在梯形的顶点C上,使三角板绕点C旋转。

(1)当三角板旋转到图1的位置时,猜想DE与BF的数量关系,并加以证明。

(2)在(1)问条件下,若BE:CE=1:2,∠BEC=135°,求sin∠BFE的值。

(3)当三角板的一边CF与梯形对角线AC重合时,作DH⊥PE于H,如图2,若OF=时,求PE及DH的长。

 

 

 

 

 

查看答案和解析>>

(本题12分)已知:如图,二次函数的图象与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).

【小题1】(1)求该二次函数的关系式;
【小题2】(2)写出该二次函数的对称轴和顶点坐标;
【小题3】(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
【小题4】(4)若平行于x轴的动直线与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由。

查看答案和解析>>

(本题12分)在梯形ABCD中,AB∥CD,∠BCD=90,且AB=1,BC=2,tan∠ADC=2;对角线相交于O点,等腰直角三角板的直角顶点落在梯形的顶点C上,使三角板绕点C旋转。

(1)当三角板旋转到图1的位置时,猜想DE与BF的数量关系,并加以证明。
(2)在(1)问条件下,若BE:CE=1:2,∠BEC=135°,求sin∠BFE的值。
(3)当三角板的一边CF与梯形对角线AC重合时,作DH⊥PE于H,如图2,若OF=时,求PE及DH的长。

查看答案和解析>>


同步练习册答案