如下图左.平面直角坐标系中.AB.CD都垂直于x轴.垂足分别为B.D.且AD与BC相交于E.已知点A的坐标为.点C的坐标为: (1)分别求经过A.D两点与B.C两点的直线, (2)证明点E在y轴上, (3)求经过A.E.C三点的抛物线, (4)如果AB的位置不变.同时将CD向右水平移动k个单位长度.此时AD与BC相交于E/点.如下图右.求△AE/C的面积S与k的函数关系式. 查看更多

 

题目列表(包括答案和解析)

(本题满分14分)如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F.

  (1)求OA、OC的长;

  (2)求证:DF为⊙O′的切线;

  (3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.

                

 

查看答案和解析>>

(本题满分14分)如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F.

  (1)求OA、OC的长;

  (2)求证:DF为⊙O′的切线;

  (3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.

                

 

查看答案和解析>>

(本题满分14分)如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F.
  (1)求OA、OC的长;
  (2)求证:DF为⊙O′的切线;
  (3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.
                

查看答案和解析>>

(本题满分14分)如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F.
  (1)求OA、OC的长;
  (2)求证:DF为⊙O′的切线;
  (3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.
                

查看答案和解析>>

(本题满分14分)如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点 M处,点C落在点N处,MN与CD交于点P, 连接EP.
⑴如图②,若M为AD边的中点,①△AEM的周长=____    _cm;②求证:EP=AE+DP;

⑵随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.

查看答案和解析>>


同步练习册答案