题目列表(包括答案和解析)
(12分) 阅读并解答问题
用配方法可以解一元二次方程,还可以用它来解决很多问题.例如:因为
,所以
就有最小值1,即
,只有当
时,才能得到这个式子的最小值1.同样,因为
,所以
有最大值1,即
,只有在
时,才能得到这个式子的最大值1.
![]()
(1)当
= 时,代数式
有最 (填写大或小)值为 .
(2)当
= 时,代数式
有最 (填写大或小)值为 .
(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?
配方法可以用来解一元二次方程,还可以用它来解决很多问题。例如:因为
,所以
,即:
有最小值1,此时
;同样,因为
,所以
,即
有最大值6,此时
。
①当
=
时,代数式
有最 (填写大或小)值为
。②当
=
时,代数式
有最 (填写大或小)值为
。
③矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?
![]()
(12分) 阅读并解答问题
用配方法可以解一元二次方程,还可以用它来解决很多问题.例如:因为
,所以
就有最小值1,即
,只有当
时,才能得到这个式子的最小值1.同样,因为
,所以
有最大值1,即
,只有在
时,才能得到这个式子的最大值1.
![]()
(1)当
= 时,代数式
有最 (填写大或小)值为 .
(2)当
= 时,代数式
有最 (填写大或小)值为 .
(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?
(12分) 阅读并解答问题
用配方法可以解一元二次方程,还可以用它来解决很多问题.例如:因为
,所以
就有最小值1,即
,只有当
时,才能得到这个式子的最小值1.同样,因为
,所以
有最大值1,即
,只有在
时,才能得到这个式子的最大值1.![]()
(1)当
= 时,代数式
有最 (填写大或小)值为 .
(2)当
= 时,代数式
有最 (填写大或小)值为 .
(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com