..解决下列问题: 查看更多

 

题目列表(包括答案和解析)

25、2006年青岛市春季房交会期间,某房地产公司对参加本次房交会的消费者进行了随机问卷,共发放1200份调查问卷,实际收回1000份.该房地产公司根据问卷情况,作了以下两方面的统计.
1、根据被调查消费者年收入情况制成的统计表:

2、根据被调查消费者打算购买不同住房面积的人数情况制成的扇形统计图:

根据上述信息,解决下列问题:
(1)被调查的消费者平均年收入为
2.74
万元.(提示:在计算时,2万元以下的都看成1万元,2万~4万元的都看成3万元,依此类推,8万元以上的都看成9万元)
(2)打算购买80m2~100m2的消费者人数为
360
人.
(3)如果你是该房地产公司的开发商,请你从建房面积等方面谈谈你今后的工作打算(不超过30字).

查看答案和解析>>

阅读下列材料:
小明遇到一个问题:如图1,正方形ABCD中,E、F、G、H分别是AB、BC、CD和DA边上靠近A、B、C、D的n等分点,连接AF、BG、CH、DE,形成四边形MNPQ.求四边形MNPQ与正方形ABCD的面积比(用含n的代数式表示).
小明的做法是:
先取n=2,如图2,将△ABN绕点B顺时针旋转90゜至△CBN′,再将△ADM绕点D逆时针旋转90゜至△CDM′,得到5个小正方形,所以四边形MNPQ与正方形ABCD的面积比是
15

请你参考小明的做法,解决下列问题:
(1)取n=3,如图3,四边形MNPQ与正方形ABCD的面积比为
 
(直接写出结果);
(2)在图4中探究,n=4时四边形MNPQ与正方形ABCD的面积比为
 
(在图4上画图并直接写出结果);
(3)猜想:当E、F、G、H分别是AB、BC、CD和DA边上靠近A、B、C、D的n等分点时,四边形MNPQ与正方形ABCD的面积比为
 
(用含n的代数式表示);
(4)图5是矩形纸片剪去一个小矩形后的示意图,请你将它剪成三块后再拼成正方形(在图5中画出并指明拼接后的正方形).
精英家教网

查看答案和解析>>

探索研究:
通过对一次函数、反比例函数的学习.我们积累了一定的经验.下面我们借鉴以往研究函效的经验,探索的数y=x+
1
x
(x>0)的图象和性质.
(1)填写下表,画出函数的图象:
x
1
4
1
3
1
2
1 2 3 4
y
(2)观察图象,写出函数两条不同类型的性质:
函数两条不同类型的性质是:当0<x<1时,y 随x的增大而减小,当x>1时,y 随x的增大而增大;
函数两条不同类型的性质是:当0<x<1时,y 随x的增大而减小,当x>1时,y 随x的增大而增大;

当x=1时,函数y=x+
1
x
(x>0)的最小值是2.
当x=1时,函数y=x+
1
x
(x>0)的最小值是2.

知识运用:
一般函数y=x+
a
x
(x>0,a>0)也有类似的结论.请利用上面探究函数性质的方法解决下列问题:
己知一个矩形的面积是4.设矩形的一边长为x.它的周长为y.求y与x的函数关系式,井求出:当x取何值时.矩形的周长最小?最小值是多少?

查看答案和解析>>

阅读以下材料:
对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:
M{-1,2,3}=
-1+2+3
3
=
4
3
;min{-1,2,3}=-1;min{-1,2,a}=
a(a≤-1)
-1(a>-1)

解决下列问题:
(1)填空:
如果min{2,2x+2,4-2x}=2,则x的取值范围为
 

(2)如果M{2,x+1,2x}=min{2,x+1,2x},求x.

查看答案和解析>>

如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上,O为坐标原点,且为AD边的中点,若把四边形ABCD绕着点O顺时针旋转180°,试解决下列问题:
(1)画出四边形ABCD旋转后的图形;
(2)求点C旋转后的坐标.

查看答案和解析>>


同步练习册答案