(3)请结合图形.直接写出的最小值. 七.解答题 查看更多

 

题目列表(包括答案和解析)

请阅读下列材料:
问题:如图1,点A,B在直线l的同侧,在直线l上找一点P,使得AP+BP的值最小.
小明的思路是:如图2,作点A关于直线l的对称点A′,连接A′B,则A′B与直线l的交点P即为所求.

请你参考小明同学的思路,探究并解决下列问题:
(1)如图3,在图2的基础上,设AA′与直线l的交点为C,过点B作BD⊥l,垂足为D.若CP=1,PD=2,AC=1,写出AP+BP的值;
(2)将(1)中的条件“AC=1”去掉,换成“BD=4-AC”,其它条件不变,写出此时AP+BP的值;
(3)请结合图形,直接写出的最小值.

查看答案和解析>>

请阅读下列材料:问题:如图1,点A、B在直线l的同侧,在直线l上找一点P,使得AP+BP的值最小。小明的思路是:如图2,作点A关于直线l的对称点A',连接A'B,则A'B与直线l的交点P即为所求。
         
请你参考小明同学的思路,探究并解决下列问题:
(1)如图3,在图2的基础上,设AA'与直线l的交点为C,过点B作BD⊥l,垂足为D,若CP=1,PD=2,AC=1,写出AP+BP的值;
(2)将(1)中的条件“AC=1”去掉,换成“BD= 4-AC”,其它条件不变,写出此时AP+BP的值;
(3)请结合图形,直接写出的最小值。

查看答案和解析>>

(2009•昌平区一模)请阅读下列材料:
问题:如图1,点A,B在直线l的同侧,在直线l上找一点P,使得AP+BP的值最小.
小明的思路是:如图2,作点A关于直线l的对称点A′,连接A′B,则A′B与直线l的交点P即为所求.

请你参考小明同学的思路,探究并解决下列问题:
(1)如图3,在图2的基础上,设AA′与直线l的交点为C,过点B作BD⊥l,垂足为D.若CP=1,PD=2,AC=1,写出AP+BP的值;
(2)将(1)中的条件“AC=1”去掉,换成“BD=4-AC”,其它条件不变,写出此时AP+BP的值;
(3)请结合图形,直接写出的最小值.

查看答案和解析>>

请阅读下列材料:
问题:如图1,点A,B在直线l的同侧,在直线l上找一点P,使得AP+BP的值最小.
小明的思路是:如图2,作点A关于直线l的对称点A′,连接A′B,则A′B与直线l的交点P即为所求.

请你参考小明同学的思路,探究并解决下列问题:
(1)如图3,在图2的基础上,设AA′与直线l的交点为C,过点B作BD⊥l,垂足为D.若CP=1,PD=2,AC=1,写出AP+BP的值;
(2)将(1)中的条件“AC=1”去掉,换成“BD=4-AC”,其它条件不变,写出此时AP+BP的值;
(3)请结合图形,直接写出数学公式的最小值.

查看答案和解析>>

.(12分)如图,在平面直角坐标系中,点的坐标为,点轴的正半轴上,为△的中线,过两点的抛物线轴相交于两点(的左侧).

【小题1】(1)求抛物线的解析式;
【小题2】(2)等边△的顶点在线段上,求的长;
【小题3】(3)点为△内的一个动点,设,请直接写出的最小值,以及取得最小值时,线段的长.

查看答案和解析>>


同步练习册答案