(2)若半⊙的半径为.求的长度. 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系中,直线y=kx+b(k为常数且k≠0)分别交x轴、y轴于点A、B,⊙O精英家教网半径为
5
个单位长度.如图,若点A在x轴正半轴上,点B在y轴正半轴上,且OA=OB.
(1)求k的值;
(2)若b=4,点P为直线y=kx+b上的动点,过点P作⊙O的切线PC、PD,切点分别为C、D,当PC⊥PD时,求点P的坐标.

查看答案和解析>>

在平面直角坐标系中,直线y=kx+b(k为常数且k≠0)分别交x轴、y轴于点A、B,⊙O半径为
5
个单位长度.
(1)如图甲,若点A在x轴正半轴上,点B在y轴正半轴上,且OA=OB.
①求k的值;
②若b=4,点P为直线y=kx+b上的动点,过点P作⊙O的切线PC、PD,切点分别为C、D,当PC⊥PD时,求点P的坐标.
(2)若k=-
1
2
,直线y=kx+b将圆周分成两段弧长之比为1:2,求b的值.(图乙供选用)

查看答案和解析>>

如图,二次函数的图像交轴于,交轴于,过画直线。

(1)求二次函数的解析式;
(2)点轴正半轴上,且,求的长;
(3)点在二次函数图像上,以为圆心的圆与直线相切,切点为
① 点轴右侧,且(点与点对应),求点的坐标;
② 若的半径为,求点的坐标。

查看答案和解析>>

如图,二次函数y=ax2+bx+c的图象交x轴于A(-1,0),B(2,0),交y轴于C(0,-2),过A,C画直线.
(1)求二次函数的解析式;
(2)点P在x轴正半轴上,且PA=PC,求OP的长;
(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.
①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;
②若⊙M的半径为,求点M的坐标.

查看答案和解析>>

如图,二次函数y=ax2+bx+c的图象交x轴于A(-1,0),B(2,0),交y轴于C(0,-2),过A,C画直线.
(1)求二次函数的解析式;
(2)点P在x轴正半轴上,且PA=PC,求OP的长;
(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.
①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;
②若⊙M的半径为,求点M的坐标.

查看答案和解析>>


同步练习册答案