16. 已知:如图.在直角坐标系xOy中.Rt△OCD的一边OC在x轴上.∠C=90°.点D在第一象限.OC=3.DC=4.反比例函数的图象经过OD的中点A. (1)求该反比例函数的解析式,(2)若该反比例函数的图象与Rt△OCD的另一边DC交于点B.求过A.B两点的直线的解析式. 查看更多

 

题目列表(包括答案和解析)

(本小题满分10分)已知,等腰Rt△ABC中,点O是斜边的中点,△MPN是直角三角形,固定△ABC,滑动△MPN,在滑动过程中始终保持点P在AC上,且 PM⊥AB,PN⊥BC,垂足分别为E、F.

(1)如图1,当点P与点O重合时,OE、OF的数量和位置关系分别是____      __.

(2)当△MPN移动到图2的位置时,(1)中的结论还成立吗?请说明理由.

(3)如图3,等腰Rt△ABC的腰长为6,点P在AC的延长线上时,Rt△MPN的边PM    

与AB的延长线交于点E,直线BC与直线NP交于点F,OE交BC于点H,且 EH:  HO=2:5,则BE的长是多少?

 

查看答案和解析>>

(本小题10分)

将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=2,P是AC上的一个动点.

(1)当点P运动到∠ABC的平分线上时,连接DP,求DP的长;

(2)当点P在运动过程中出现PD=BC时,求此时∠PDA的度数;

(3)当点P运动到什么位置时,以D、P、B、Q为顶点的平行四边形的顶点Q恰好在边BC上?求出此时□DPBQ的面积.

 

查看答案和解析>>

(本小题满分10分)

如图,已知点E在直角△ABC的斜边AB上,以AE为直径的⊙O与直角边BC相切于点D,∠B = 30°.

求证:1.(1)AD平分∠BAC,2.(2)若BD =  ,求B E的长.

 

查看答案和解析>>

(本小题满分10分)

    学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.

类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad A=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.

根据上述对角的正对定义,解下列问题:

(1)sad 的值为(   )A.       B.1  C.      D.2

 

(2)对于,∠A的正对值sad A的取值范围是        .

(3)已知,其中为锐角,试求sad的值.

 

 

查看答案和解析>>

(本小题满分5分)已知菱形纸片ABCD的边长为,∠A=60°,E为边上的点,过点E作EF∥BD交AD于点F.将菱形先沿EF按图1所示方式折叠,点A落在点处,过点作GH∥BD分别交线段BC、DC于点G、H,再将菱形沿GH按图1所示方式折叠,点C落在点处,H分别交于点M、N.若点在△EF的内部或边上,此时我们称四边形(即图中阴影部分)为“重叠四边形”.

 

 

 

 

 

 

 

 

 

 

 

 

 


图1                      图2                     备用图

(1)若把菱形纸片ABCD放在菱形网格中(图中每个小三角形都是边长为1的等边三角形),点A、B、C、D、E恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠四边形的面积;

(2)实验探究:设AE的长为,若重叠四边形存在.试用含的代数式表示重叠四边形的面积,并写出的取值范围(直接写出结果,备用图供实验,探究使用).

 

查看答案和解析>>


同步练习册答案