题目列表(包括答案和解析)
.在平面直角坐标系中,二次函数
的图象与x轴交于A、 B两点(点A在点B的左侧),交y轴于点E. 点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行. 一次函数y=-x+m的图象过点C,交y轴于D点.
(1)求点C、点F的坐标;
(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;
(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.
(6分)在平面直角坐标系中,将坐标是(0,4),(1,0),(3,0),(4,4)的点用线段依次连接起来形成一个图案.
![]()
1.(1)在下列坐标系中画出这个图案;
2.(2)若将上述各点的横坐标保持不变,纵坐标分别乘以-1,再将所得的各个点线段依次连接起来,所得的图案与原图案相比有什么变化?
在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠
在两坐标轴上,点C为 (-1,0).如图所示,B点在抛物线y=
x2+
x-2图象上,过点B作
BD⊥x轴,垂足为D,且B点横坐标为-3.
(1)求证:△BDC≌△COA;
(2)求BC所在直线的函数关系式;
(3)抛物线的对称轴上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出所
有点P的坐标;若不存在,请说明理由.![]()
在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠
在两坐标轴上,点C为 (-1,0) .如图所示,B点在抛物线y=
x2+
x-2图象上,过点B作
BD⊥x轴,垂足为D,且B点横坐标为-3.
(1)求证:△BDC≌△COA;
(2)求BC所在直线的函数关系式;
(3)抛物线的对称轴上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出所
有点P的坐标;若不存在,请说明理由.
![]()
在平面直角坐标系中,将坐标是(0,4),(1,0),(2,4),(3,0),(4,4)的点用线段依次连接起来形成一个图案.
(1)在下列坐标系中画出这个图案;
![]()
(2)若将上述各点的横坐标保持不变,纵坐标分别乘以-1,再将所得的各个点用线段依次连接起来,所得的图案与原图案相比有什么变化?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com