20.如图.已知在△ABC中.AB=AC.D为BC边的中点.过点D作DE⊥AB.DF⊥AC.垂足分别为E.F 查看更多

 

题目列表(包括答案和解析)

如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC,于点O,点P,D分别在AO和BC上,PB=PD,DE⊥AC于点E,求证:△BPO≌△PDE.
作业宝
(1)小明冥思苦想许久而不得解,只好去问老师.老师给他分析了如下的思路.
作业宝
根据上述思路,小明终于会证明了.请你完整地书写本题的证明过程.
(2)证明完后,老师又提出了如下问题让小明解答:若PB平分∠ABO,其余条件不变.求证:AP=CD.

查看答案和解析>>

(本小题10分)

将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=2,P是AC上的一个动点.

(1)当点P运动到∠ABC的平分线上时,连接DP,求DP的长;

(2)当点P在运动过程中出现PD=BC时,求此时∠PDA的度数;

(3)当点P运动到什么位置时,以D、P、B、Q为顶点的平行四边形的顶点Q恰好在边BC上?求出此时□DPBQ的面积.

 

查看答案和解析>>

(本小题满分7分)

(1)(3分)计算:

 

(2)(4分)已知:如图,在Rt△ABC和Rt△BAD中,AB为斜边,AC=BD,BC,AD相交于点E.

求证:AE=BE.

 

查看答案和解析>>

(本小题满分10分)

数形结合作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,即“以数解形”;或者借助形的几何直观性来阐明数之间的某种关系,即 “以形助数”。                                                            

如浙教版九上课本第109页作业题第2题:如图1,已知在△ABC中,∠ACB=900,CD⊥AB,D为垂足。易证得两个结论:(1)AC·BC = AB·CD   (2)AC2= AD·AB

(1)请你用数形结合的“以数解形”思想来解:如图2,已知在△ABC中(AC>BC),∠ACB=900,CD⊥AB,D为垂足, CM平分∠ACB,且BC、AC是方程x2-14x+48=0的两个根,求AD、MD的长。

(2)请你用数形结合的“以形助数”思想来解: 设a、b、c、d都是正数,满足a:b=c:d,且a最大。求证:a+d>b+c(提示:不访设AB=a,CD=d,AC=b,BC=c,构造图1)

 

查看答案和解析>>

(本题9分)
如图1,在△ABC中,AB=BC,P为AB边上一点,连接CP,以PA、PC为邻边作APCD,AC与PD相交于点E,已知∠ABC=∠AEP=α(0°<α<90°).
【小题1】(1)求证:∠EAP=∠EPA;
【小题2】(2)APCD是否为矩形?请说明理由;
【小题3】(3)如图2,F为BC中点,连接FP,将∠AEP绕点E顺时针旋转适当的角度,得到∠MEN(点M、N分别是∠MEN的两边与BA、FP延长线的交点).猜想线段EM与EN之间的数量关系,并证明你的结论.

查看答案和解析>>


同步练习册答案