(2)当为何值时.使用新设备后的l至月的利润和与不安装新设备时个月的利润和相等? 查看更多

 

题目列表(包括答案和解析)

已知:如图,矩形ABCD中,点E、F分别在DC,AB边上,且点A、F、C在以点E为圆心,精英家教网EC为半径的圆上,连接CF,作EG⊥CF于G,交AC于H.已知AB=6,设BC=x,AF=y.
(1)求证:∠CAB=∠CEG;
(2)①求y与x之间的函数关系式. ②x=
 
时,点F是AB的中点;
(3)当x为何值时,点F是
AC
的中点,以A、E、C、F为顶点的四边形是何种特殊四边形?试说明理由.

查看答案和解析>>

如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AB=3cm,AD=14cm,BC=10cm,动点P从D点精英家教网出发,沿DA方向以2cm/秒的速度运动,运动时间为t秒.
(1)当t为何值时,以PDCB为顶点的四边形是平行四边形;
(2)当t为何值时,以PCD为顶点的三角形是直角三角形;
(3)问:在点P的运动过程中,梯形内是否存在这样的点Q,使得过PQ的直线与BC相交且把梯形ABCD分成面积相等的两部分?若存在,请你用一句话概括出Q点的位置;否则说明理由.

查看答案和解析>>

精英家教网在△ABC中,∠A=90°,AB=8cm,AC=6cm,点M,点N同时从点A出发,点M沿边AB以4cm/s的速度向点B运动,点N从点A出发,沿边AC以3cm/s的速度向点C运动,(点M不与A,B重合,点N不与A,C重合),设运动时间为xs.
(1)求证:△AMN∽△ABC;
(2)当x为何值时,以MN为直径的⊙O与直线BC相切?
(3)把△AMN沿直线MN折叠得到△MNP,若△MNP与梯形BCNM重叠部分的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?

查看答案和解析>>

如图,在平面直角坐标系中,点C的坐标是(0,3),点A的坐标是(8,0),点B的坐标是(4,3),P、Q分别是x、y轴上的两个动点,点P从C出发,在线段CB上以1个单位/秒的速度向点B移动,点Q从A出发,在线段AO上以精英家教网2个单位/秒的速度向点O 移动.设点P、Q同时出发,运动的时间为t(秒)
(1)当t为何值时,PQ平分四边形OABC的面积?
(2)当t为何值时,PQ⊥OB?
(3)当t为何值时,PQ∥AB?
(4)当t为何值时,△OPQ是等腰三角形?

查看答案和解析>>

23、随着生活水平的提高,人们对环保要求也是越来越高,萧山区内有一家化工厂原来每月利润为120万元.从今年一月起响应政府“实施清洁生产,打造绿色化工”的号召,开始安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1至x月(1≤x≤12)的利润的 月平均值w(万元)满足w=10x+80,第2年的月利润稳定在第1年的第12个月的水平.
(1)设使用回收净化设备后的1至x月(1≤x≤12)的利润和为y,写出y关于x的函数关系式,并求前几个月的利润和等于840万元?
(2)当x为何值时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等?
(3)求使用回收净化设备后两年的利润总和?

查看答案和解析>>


同步练习册答案