(Ⅲ)求证:当时,有. 西安中学师大附中高2009届第二次模拟考试高新一中长安一中数学答题纸题号123456789101112答案 查看更多

 

题目列表(包括答案和解析)

(08年潮州市二模理)(14分)已知函数的导数满足,常数为方程的实数根.

⑴ 若函数的定义域为I,对任意,存在,使等式=成立,

 求证:方程不存在异于的实数根;

⑵ 求证:当时,总有成立;

⑶ 对任意,若满足,求证

查看答案和解析>>

 22已知函数,若方程有且只有两个相异根0和2,且

(1)求函数的解析式。

(2)已知各项不为1的数列{an}满足,求数列通项an

(3)如果数列{bn}满足,求证:当时,恒有成立。

查看答案和解析>>

(本小题满分12分)

对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点。如果函数有且只有两个不动点0,2,且

(1)求函数f(x)的解析式;

(2)已知各项不为零的数列数列前n项和),求数列通项

(3)如果数列满足,求证:当时,恒有成立.

 

查看答案和解析>>

已知函数的导函数满足常数为方程

的实数根

(1)若函数的定义域为I,对任意 存在使等式成立。   求证:方程不存在异于的实数根。

    (2)求证:当时,总有成立。

查看答案和解析>>

(本小题满分14分)已知定义在上的函数,满足条件:①,②对非零实数,都有

   (1)求函数的解析式;

   (2)设函数,直线分别与函数交于两点,(其中);设为数列的前项和,求证:当时, .

 

查看答案和解析>>

一.选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

C

B

A

C

D

D

D

A

B

A

A

二.填空题

   13.4;        14. ;       15.15;     16.,可以填写任一实数.

三.解答题

17. (Ⅰ)列表:

2

6

10

14

0

1

3

1

1

描点作图,得图象如下.

6分

(Ⅱ)

所以,当,即时,函数取得最小值.     12分

18.由图可知,参加活动1次、2次和3次的学生人数分别为5、25和20.

(I)该班学生参加活动的人均次数为=.    6分

(II)从该班中任选两名学生,他们参加活动次数恰好相等的概率为.                                              12分

19.(Ⅰ)∵AD=2AB=2,E是AD的中点,

∴△BAE,△CDDE是等腰直角三角形,

易知,∠BEC=90°,即BE⊥EC    

又∵平面D′EC⊥平面BEC,面D′EC∩面BEC=EC,

∴BE⊥面D′EC,又CD′面D′EC,∴BE⊥CD′.                  6分

(Ⅱ)法一:设M是线段EC的中点,过M作MF⊥BC

垂足为F,连接D′M,D′F,则D′M⊥EC

∵平面D′EC⊥平面BEC,

∴D′M⊥平面EBC,

∴MF是D′F在平面BEC上的射影,

由三垂线定理得:D′F⊥BC

∴∠D′FM是二面D′―BC―E的平面角.

在Rt△D′MF中,

即二面角D′―BC―E的正切值为.                              12分

法二:如图,以EB,EC为x轴,y轴,过E垂直于平面BEC的射线为z轴,建立空间直角坐标系,

设平面BEC的法向量为;平面D′BC的法向量为

∴二面角D′―BC―E的正切值为.                                 12分

20.(I)

   (II)由(I)知

   

21(Ⅰ)设椭圆C的方程为,则由题意知b = 1.

∴椭圆C的方程为  …………………………………………………6分

(Ⅱ)易知直线的斜率为,从而直线的斜率为1.设直线的方程为,代如椭圆的方程,并整理可得.设,则.于是

解之得.

时,点即为直线与椭圆的交点,不合题意.当时,经检验知和椭圆相交,符合题意.

所以,当且仅当直线的方程为时, 点的垂心.        12分

22.(Ⅰ)对一切

于是,                            

         ()   5分

(Ⅱ)由

两式相减,得:

  

        

       ∴.                                10分

(Ⅲ) 由于,        

所以,   14分

 

 


同步练习册答案