A.p B.―p C. D. 查看更多

 

题目列表(包括答案和解析)

精英家教网A.选修4-1:几何证明选讲
锐角三角形ABC内接于⊙O,∠ABC=60?,∠BAC=40?,作OE⊥AB交劣弧
AB
于点E,连接EC,求∠OEC.
B.选修4-2:矩阵与变换
曲线C1=x2+2y2=1在矩阵M=[
12
01
]的作用下变换为曲线C2,求C2的方程.
C.选修4-4:坐标系与参数方程
P为曲线C1
x=1+cosθ
y=sinθ
(θ为参数)上一点,求它到直线C2
x=1+2t
y=2
(t为参数)距离的最小值.
D.选修4-5:不等式选讲
设n∈N*,求证:
C
1
n
+
C
2
N
+L+
C
N
N
n(2n-1)

查看答案和解析>>

A.选修4-1:几何证明选讲
如图,直角△ABC中,∠B=90°,以BC为直径的⊙O交AC于点D,点E是AB的中点.
求证:DE是⊙O的切线.
B.选修4-2:矩阵与变换
已知二阶矩阵A有特征值-1及其对应的一个特征向量为
1
-4
,点P(2,-1)在矩阵A对应的变换下得到点P′(5,1),求矩阵A.
C.选修4-4:坐标系与参数方程
在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为ρcos(θ-
π
4
)=
2
,曲线C的参数方程为
x=2cosα
y=sinα
(α为参数),求曲线C截直线l所得的弦长.
D.选修4-5:不等式选讲
已知a,b,c都是正数,且abc=8,求证:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

A.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC,DE交AB于点F.求证:△PDF∽△POC.
B.已知矩阵A=
.
1-2
3-7
.

(1)求逆矩阵A-1
(2)若矩阵X满足AX=
3
1
,试求矩阵X.
C.坐标系与参数方程
已知极坐标系的极点O与直角坐标系的原点重合,极轴与x轴的正半轴重合,曲线C1:ρcos(θ+
π
4
)=2
2
与曲线C2
x=4t2
y=4t
,(t∈R)交于A、B两点.求证:OA⊥OB.
D.已知x,y,z均为正数,求证:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

.P是双曲线的右支上一点,M、N分别是圆(x+5)2+y2=4和(x-5)2+y2=1上的点,则|PM|-|PN|的最大值为(    )

A. 6              B.7              C.8                D.9

 

查看答案和解析>>

.P是双曲线的右支上一点,M、N分别是圆(x+5)2+y2=4和(x-5)2+y2=1上的点,则|PM|-|PN|的最大值为(    )

A. 6              B.7              C.8                D.9

 

查看答案和解析>>

 

一、选择题

BBACA   DCBBB(分类分布求解)

二、填空题

11.{2,7}     12.840    13.1    14.2    15.(圆锥曲线定义)

16.解:(1)由

   (2)由余弦定理知:

    又

17.解:设事件A为“小张被甲单位录取”,B为“被乙单位录取”,C为“被丙单位录取”。

   (1)小张没有被录取的概率为:

   (2)小张被一个单位录取的概率为

    被两个单位同时录取的概率为

    被三个单位录取的概率为:所以分布列为:

ξ

0

1

2

3

P

    所以:

18.解:(1)

   

    所以:

19.解:(1)连接B1D1,ABCD―A1B1C1D1为四棱柱,

则在四边形BB1D1D中(如图),

得△D1O1B1≌△B1BO,可得∠D1O1B1=∠OBB1=90°,

即D1O1⊥B1O

   (2)连接OD1,显然:∠D1OB1为所求的角,

容易计算:∠D1OB1

    所以:

20.解:(1)曲线C的方程为

   (2)当直线的斜率不存在时,它与曲线C只有一个交点,不合题意,

    当直线m与x轴不垂直时,设直线m的方程为

   代入    ①

    恒成立,

    设交点A,B的坐标分别为

∴直线m与曲线C恒有两个不同交点。

    ②        ③

 

       当k=0时,方程①的解为

   

       当k=0时,方程①的解为

    综上,由

21.解:(1)当

    由

0

递增

极大值

递减

    所以

   (2)

       ①

    由

        ②

    由①②得:即得:

    与假设矛盾,所以成立

   (3)解法1:由(2)得:

   

    由(2)得:

解法3:可用数学归纳法:步骤同解法2

解法4:可考虑用不等式步骤略