3.与数列相综合 在04年的高考试题中.上海.湖北.浙江解析几何大题与数列相综合.此外.03年的江苏卷也曾出现过此类试题.所以.在05年的试题中依然会出现类似的问题.例9如图.ΔOBC的在个顶点坐标分别为,设P为线段BC的中点,P2为线段CO的中点,P3为线段OP1的中点,对于每一个正整数n,Pn+3为线段PnPn+1的中点,令Pn的坐标为(xn,yn), (Ⅰ)求及;(Ⅱ)证明(Ⅲ)若记证明是等比数列.解:(Ⅰ)因为.所以.又由题意可知.∴== ∴为常数列.∴(Ⅱ)将等式两边除以2.得又∵.∴ (Ⅲ)∵ 又∵∴是公比为的等比数列. 查看更多

 

题目列表(包括答案和解析)

某市投资甲、乙两个工厂,2011年两工厂的产量均为100万吨,在今后的若干年内,甲工厂的年产量每年比上一年增加10万吨,乙工厂第年比上一年增加万吨,记2011年为第一年,甲、乙两工厂第年的年产量分别为万吨和万吨.

(Ⅰ)求数列的通项公式;

(Ⅱ)若某工厂年产量超过另一工厂年产量的2倍,则将另一工厂兼并,问到哪一年底,其中哪一个工厂被另一个工厂兼并.

【解析】本试题主要考查数列的通项公式的运用。

第一问由题得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98

第二问,考查等差数列与等比数列的综合,考查用数列解决实际问题,其步骤是建立数列模型,进行计算得出结果,再反馈到实际中去解决问题.由于比较两个工厂的产量时两个函数的形式较特殊,不易求解,故采取了列举法,数据列举时作表格比较简捷.

解:(Ⅰ)由题得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98……6分

(Ⅱ)由于n,各年的产量如下表 

n       1     2    3      4     5     6     7     8    

an      100   110   120   130   140   150  160   170

bn      100   102    106  114   130   162   226   354

2015年底甲工厂将被乙工厂兼并

 

查看答案和解析>>

已知数列{}中,=1,前n项和

    (Ⅰ)求

    (Ⅱ)求{}的通项公式。

【解析】本试题主要考查了数列的通项公式与数列求和的相结合的综合运用。

【点评】试题出题比较直接,没有什么隐含的条件,只要充分利用通项公式和前n项和的关系式变形就可以得到结论。

 

查看答案和解析>>

(2012•深圳一模)已知各项为实数的数列{an}是等比数列,且a1=2,a5+a7=8(a2+a4).数列{bn}满足:对任意正整数n,有a1b1+a2b2+…+anbn=(n-1)•2n+1+2
(1)求数列{an}与数列{bn}的通项公式;
(2)在数列{an}的任意相邻两项ak与ak+1之间插入k个(-1)kbk(k∈N*)后,得到一个新的数列{cn}.求数列{cn}的前2012项之和.

查看答案和解析>>

已知球O的表面积为16π,且球心O在60°的二面角α-l-β内部,若平面α与球相切于M点,平面β与球相截,且截面圆O1的半径为
3
,P为圆O1的圆周上任意一点,则M、P两点的球面距离的最值为

查看答案和解析>>

若给定椭圆C:ax2+by2=1(a>0,b>0,a≠b)和点N(x0,y0),则称直线l:ax0x+by0y=1为椭圆C的“伴随直线”.
(1)若N(x0,y0)在椭圆C上,判断椭圆C与它的“伴随直线”的位置关系(当直线与椭圆的交点个数为0个、1个、2个时,分别称直线与椭圆相离、相切、相交),并说明理由;
(2)命题:“若点N(x0,y0)在椭圆C的外部,则直线l与椭圆C必相交.”写出这个命题的逆命题,判断此逆命题的真假,说明理由;
(3)若N(x0,y0)在椭圆C的内部,过N点任意作一条直线,交椭圆C于A、B,交l于M点(异于A、B),设
MA
=λ1
AN
MB
=λ2
BN
,问λ12是否为定值?说明理由.

查看答案和解析>>


同步练习册答案