2.如右图所示.在一个半径为R的圆形区域内存在着匀强磁场.磁场方向垂直于圆面向外.一带电量为Q的粒子从磁场的边界点在一定的初速度进入磁场区域内.做圆周运动到C点.若经过D点时与一个原来静止的.带负电量为q的粒子相碰后.结合在一起.形成一个新粒子.关于这个新粒子的运动情况.下列描述正确的是A.新粒子半径不变.仍然到达CB.新粒子半径增大.可能到达EC.新粒子半径减小.可能到达FD.以上均有可能 查看更多

 

题目列表(包括答案和解析)

如右图所示,电阻R=1Ω、半径r1=0.2m的单匝圆形导线框P内有一个与P共面的圆形磁场区域Q,P、Q的圆心相同,Q的半径r2=0.1m。t=0时刻,Q内存在着垂直于圆面向里的磁场,磁感应强度B随时间t变化的关系是B=2-t(T)。若规定逆时针方向为电流的正方向,则线框P中感应电流I随时间t变化的关系图象应该是下图中的(   )

查看答案和解析>>

如右图所示,电阻R=1Ω、半径r1=0.2m的单匝圆形导线框P内有一个与P共面的圆形磁场区域Q,P、Q的圆心相同,Q的半径r2=0.1m。t=0时刻,Q内存在着垂直于圆面向里的磁场,磁感应强度B随时间t变化的关系是B=2-t(T)。若规定逆时针方向为电流的正方向,则线框P中感应电流I随时间t变化的关系图象应该是下图中的(   )

查看答案和解析>>

两个圆形区域内存在着匀强磁场,这两个圆的半径都是r,圆心都在y轴上,两圆相切,切点恰是原点O.两圆内磁场的磁感强度大小相同,但方向相反,上面的沿-z方向,下面的沿+z方向,如图所示.在坐标原点O处有一个放射源,放射出质量为m、电量为-q的带电粒子(重力不计),如果所有粒子都在xOy平面内,初速度大小都是v0,并且向各个方向的发射是均匀的.不计各粒子在运动过程中的相互作用.

 (1)调整磁场磁感强度的大小,可以使得所有的粒子(除了沿-x方向运动的极少数粒子以外,下同),经过磁场的偏转后速度方向都互相平行,求这时的磁感强度B的值.

(2)在满足上述条件的情况下,在x轴右方较远处与y轴平行的屏上接收到的粒子都位于与y轴平行的一条线段上,其中y=o到y=a间的区域内的粒子数是全部粒子数的1/6,求a的值.

 

查看答案和解析>>

在如右图所示的平面直角坐标系中,存在一个半径R=0.2m的圆形匀强磁场区域,磁感应强度B=1.0T,方向垂直纸面向外,该磁场区域的右边缘与坐标原点O相切.y轴右侧存在电场强度大小为E=1.0×104N/C的匀强电场,方向沿y轴正方向,电场区域宽度l=0.1m.现从坐标为(-0.2m,-0.2m)的P点发射出质量m=2.0×10-9kg、带电荷量q=5.0×10-5C的带正电粒子,沿y轴正方向射入匀强磁场,速度大小v0=5.0×103m/s.重力不计.

(1)求该带电粒子射出电场时的位置坐标;

(2)为了使该带电粒子能从坐标为(0.1m,-0.05m)的点回到电场后,可在紧邻电场的右侧一正方形区域内加匀强磁场,试求所加匀强磁场的磁感应强度大小和正方形区域的最小面积.

查看答案和解析>>

两个圆形区域内存在着匀强磁场,这两个圆的半径都是r,圆心都在y轴上,两圆相切,切点恰是原点O.两圆内磁场的磁感强度大小相同,但方向相反,上面的沿-z方向,下面的沿+z方向,如图所示.在坐标原点O处有一个放射源,放射出质量为m、电量为-q的带电粒子(重力不计),如果所有粒子都在xOy平面内,初速度大小都是v0,并且向各个方向的发射是均匀的.不计各粒子在运动过程中的相互作用.

(1)调整磁场磁感强度的大小,可以使得所有的粒子(除了沿-x方向运动的极少数粒子以外,下同),经过磁场的偏转后速度方向都互相平行,求这时的磁感强度B的值.
(2)在满足上述条件的情况下,在x轴右方较远处与y轴平行的屏上接收到的粒子都位于与y轴平行的一条线段上,其中y=o到y=a间的区域内的粒子数是全部粒子数的1/6,求a的值.
 

查看答案和解析>>


同步练习册答案