可求得a= -1. 查看更多

 

题目列表(包括答案和解析)

A={1,2,…,18}. 求最小的正整数k,使得可以把集合A分成k个两两不交的子集A1A2,…,Ak,对于任一子集)中的任意3个数abc(可以是相同的),都有

查看答案和解析>>

(1)已知抛物线y2=2px(p>0),过焦点F的动直线l交抛物线于A,B两点,为坐标原点,求证:
OA
OB
为定值;
(2)由(1)可知:过抛物线的焦点F的动直线l交抛物线于A,B两点,存在定点P,使得
PA
PB
为定值.请写出关于椭圆的类似结论,并给出证明.

查看答案和解析>>

a
=(
3
sinx,cosx)
b
=(cosx,cosx)
,记f(x)=
a
b

(1)写出函数f(x)的最小正周期;
(2)试用“五点法”画出函数f(x)在区间[-
π
12
11π
12
]
的简图,并指出该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到?
(3)若x∈[-
π
6
π
3
]
时,函数g(x)=f(x)+m的最小值为2,试求出函数g(x)的最大值并指出x取何值时,函数g(x)取得最大值.

查看答案和解析>>

如图1,某学校田径场上有一旗杆OP,为了测量它的高度,在地面上选一基线AB,设其长度为d,在A点处测得P点的仰角为α,在B点处测得P点的仰角为β.
(1)若AB=20,α=30°,β=45°,且∠AOB=30°,求旗杆的高度h;
(2)经分析若干测得的数据后,发现将基线AB调整到线段AO上(如图2),α与β之差尽量大时,可以提高测量精确度,设调整后AB的距离为d,tanβ=
4d
,旗杆的实际高度为25,试问d为何值时,β-α最大?

查看答案和解析>>

(1)以正方体的顶点为顶点,可以确定多少个四棱锥?
(2)黑暗中从3双尺码不同的鞋子中任意摸出3只,求摸出3只中有配成一双(事件A)的概率.
(3)利用二项式定理求1432013被12除所得的余数.

查看答案和解析>>


同步练习册答案