解:(1)由条件的 查看更多

 

题目列表(包括答案和解析)

解:因为有负根,所以在y轴左侧有交点,因此

解:因为函数没有零点,所以方程无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2


 13.证明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点

(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数

数字1,2,3,4恰好排成一排,如果数字i(i=1,2,3,4)恰好出现在第i个位置上则称有一个巧合,求巧合数的分布列。

查看答案和解析>>

已知条件p:
k-1
k
<0
,条件q:关于x的不等式组
x2-x-2>0
2x2+(2k+5)x+5k<0
的整数解的集合为{-2},试判断p是q的充分不必要条件是否成立,说明理由.

查看答案和解析>>

已知条件p:|x-1|>a(a≥0)和条件q:lg(x2-3x+3)>0,
(1)求满足条件p,q的不等式的解集.
(2)分别利用所给的两个条件作为A,B构造命题:“若A,则B”,问是否存在非负实数a使得构造的原命题为真命题,而其逆命题为假命题,若存在,求出a的取值范围.若不存在,请说明理由.

查看答案和解析>>

已知条件p:|x-1|>a(a≥0)和条件q:lg(x2-3x+3)>0,
(1)求满足条件p,q的不等式的解集.
(2)分别利用所给的两个条件作为A,B构造命题:“若A,则B”,问是否存在非负实数a使得构造的原命题为真命题,而其逆命题为假命题,若存在,求出a的取值范围.若不存在,请说明理由.

查看答案和解析>>

(1)在什么条件下
y
2x
,①是正数;②是负数;③等于零;④没有意义?
(2)比较下列各组数的大小,并说明理由.
①cos31°与cos30°;②log21与log2
1
4

(3)求值:①tg(5arcsin
3
2
)
;②(-2)0×(0.01)
1
2

(4)计算:lg12.5-lg
5
8
+lgsin30°

(5)解方程:
4x
x2-4
-
2
x-2
=1-
1
x+2

查看答案和解析>>


同步练习册答案