4.若圆和圆关于对称.过点的圆P与y轴相切.则圆心P的轨迹方程是 查看更多

 

题目列表(包括答案和解析)

若圆x2+y2-ax+2y+1=0和圆x2+y2=1关于直线y=x-1对称,过点C(-a,a)的圆P与y轴相切,则圆心P的轨迹方程是

[  ]

A.y2-4x+4y+8=0

B.y2+2x-2y+2=0

C.y2+4x-4y+8=0

D.y2-2x-y+1=0

查看答案和解析>>

已知圆C过点P(1,1),且圆M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称.
(1)判断圆C与圆M的位置关系,并说明理由;
(2)过点P作两条相异直线分别与⊙C相交于A,B.
①若直线PA和直线PB互相垂直,求PA+PB的最大值;
②若直线PA和直线PB与x轴分别交于点G、H,且∠PGH=∠PHG,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.

查看答案和解析>>

已知圆C经过点A(1,2)、B(3,0),并且直线m:2x-3y=0平分圆C.
(1)求圆C的方程;
(2)过点D(0,3),且斜率为k的直线l与圆C有两个不同的交点E、F,若|EF|≥2
3
,求k的取值范围;
(3)若圆C关于点(
3
2
,1)
对称的曲线为圆Q,设M(x1,y1)、P(x2,y2)(x1≠±x2)是圆Q上的两个动点,点M关于原点的对称点为M1,点M关于x轴的对称点为M2,如果直线PM1、PM2与y轴分别交于(0,m)和(0,n),问m•n是否为定值?若是求出该定值;若不是,请说明理由.

查看答案和解析>>

如图所示,已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A,B两点

(1)写出抛物线C2的标准方程;

(2)若,求直线l的方程;

(3)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值.

查看答案和解析>>

已知圆C的方程为x2+y2+2x-7=0,圆心C关于原点对称的点为A,P是圆上任一点,线段AP的垂直平分线l交PC于点Q.
(1)当点P在圆上运动时,求点Q的轨迹L的方程;
(2)过点B(1,)能否作出直线l2,使l2与轨迹L交于M、N两点,且点B是线段MN的中点,若这样的直线l2存在,请求出它的方程和M、N两点的坐标;若不存在,请说明理由.

查看答案和解析>>

 

 

一、选择题

 1―6  DBDCDD   7―12  ADCDCD

二、填空题

13.3   14.       15.-25    16.

三、解答题

17.(满分12分)

解:       ∴       …………3分

  ∴不等式a+2     ∵a<0    ∴<1+  ……5分

①当时,<0,不等式无解

②当时,<0无解

③ 当时,

xx                …………10分

综上所述,原不等式的解集为:

①当时,不等式无解

②当时,不等式解集为

xx                …………12分

18.(满分12分)

(1)甲乙两队各五名球员,一个间隔一个排序,出场序的种数是……3分

 

(2)甲队五名球员,取连续两名的方法数为4。若不考虑乙队,甲队有具只有连续两名队员射中的概率为                      …………………7分

(3)甲、乙两队点球罚完,再次出现平局,可能的情况以下6种,即均未中球,均中1球,…均中5球,故所求概率为

       …………………12分

19.(1)∵AA1⊥面ABCD, ∴AA1⊥BD,

又BD⊥AD, ∴BD⊥A1D                                  …………………2分

又A1D⊥BE,∴A1D⊥平面BDE                              …………………3分

(2)连B1C,则B1C⊥BE,易证Rt△CBE∽Rt△CBB1,

,又E为CC1中点,∴

                                           ……………………5分

取CD中点M,连BM,则BM⊥平面CD1,作MN⊥DE于N,连NB,则∠BNM是二面角B―DE―C的平面角            ……………………7分

Rt△CED中,易求得MN=中,∠BNM=

∴∠BNM=arctan                                       …………………10分

(3)易证BN长就是点B到平面A1DE的距离                    …………………11分

∴∠BN=                           …………………12分

20.(满分12分)

解:(Ⅰ)由 。           …………………2分

b2=ac及正弦定理得sin2B=sin A sin C.

于是    cot A + cot C =

=

=

=

=

=

=                              …………………7分

(Ⅱ)由      ?      =,得,又由,可得,即

由余弦定理

                                …………………9分

所以                                          …………………12分

21.(满分13分)

解:(Ⅰ)              …………………4分

(Ⅱ)…………………6分

=                                       …………………8分

                                     …………………9分

∴数列是等比数列,且       …………………10分

(Ⅲ)由(Ⅱ)得:    …………………11分

………………12分

                        ………………13分

22.(满分13分)

解:(Ⅰ)∵椭圆方程为ab>0,c>0,c2=a2-b2

,FP的中点D的坐标为()……2分

直线AB的方程为:∵D在直线AB上∴……3分

化简得    ∴…………………4分

(Ⅱ)…………5分   

       =-3  ∴                                        …………………6分

由(Ⅰ)得:                                                              …………………7分

∴椭圆方程为:                                                  …………………8分

(Ⅲ)设直线QA1QA2斜率分别为k1、k2,则

解得……10分由

解得

直线MN的方程为y=0

化简得

  ∴

即直线MN与x轴交于定点()      ……………13分


同步练习册答案