C. D. 第8题 第Ⅱ卷 查看更多

 

题目列表(包括答案和解析)

2006年普通高等学校招生全国统一考试(北京卷)

理科综合能力测试试题卷(生物部分)

1.以下不能说明细胞全能性的实验是

A.胡萝卜韧皮部细胞培育出植株            B.紫色糯性玉米种子培育出植株

C.转入抗虫基因的棉花细胞培育出植株      D.番茄与马铃薯体细胞杂交后培育出植株

2.夏季,在晴天、阴天、多云、高温干旱四种天气条件下,猕猴桃的净光合作用强度(实际光合速率与呼吸速率之差)变化曲线不同,表示晴天的曲线图是

3.用蔗糖、奶粉和经蛋白酶水解后的玉米胚芽液,通过乳酸菌发酵可生产新型酸奶,下列相关叙述错误的是

A.蔗糖消耗量与乳酸生成量呈正相关        B.酸奶出现明显气泡说明有杂菌污染

C.应选择处于对数期的乳酸菌接种          D.只有奶粉为乳酸菌发酵提供氮源

4.用32P标记了玉米体细胞(含20条染色体)的DNA分子双链,再将这些细胞转入不含32P的培养基中培养,在第二次细胞分裂的中期、后期,一个细胞中的染色体总条数和被32P标记的染色体条数分别是

A.中期20和20、后期40和20             B.中期20和10、后期40和20

C.中期20和20、后期40和10             D.中期20和10、后期40和10

29.(12分)为合理利用水域资源,某调查小组对一个开放性水库生态系统进行了初步调查,部分数据如下表:

(1)浮游藻类属于该生态系统成分中的          ,它处于生态系统营养结构中的         

(2)浮游藻类数量少,能从一个方面反映水质状况好。调查数据分析表明:该水体具有一定的       能力。

(3)浮游藻类所需的矿质营养可来自细菌、真菌等生物的          ,生活在水库淤泥中的细菌代谢类型主要为         

(4)该水库对游人开放一段时间后,检测发现水体己被氮、磷污染。为确定污染源是否来自游人,应检测

          处浮游藻类的种类和数量。

30.(18分)为丰富植物育种的种质资源材料,利用钴60的γ射线辐射植物种子,筛选出不同性状的突变植株。请回答下列问题:

(1)钴60的γ辐射用于育种的方法属于          育种。

(2)从突变材料中选出高产植株,为培育高产、优质、抗盐新品种,利用该植株进行的部分杂交实验如下:

①控制高产、优质性状的基因位于        对染色体上,在减数分裂联会期        (能、不能)配对。

②抗盐性状属于          遗传。

(3)从突变植株中还获得了显性高蛋白植株(纯合子)。为验证该性状是否由一对基因控制,请参与实验设计并完善实验方案:

①步骤1:选择                    杂交。

预期结果:                                                 

②步骤2:                                                 

预期结果:                                                  

③观察实验结果,进行统计分析:如果                    相符,可证明该性状由一对基因控制。

 

31.(18分)为研究长跑中运动员体内的物质代谢及其调节,科学家选择年龄、体重相同,身体健康的8名男性运动员,利用等热量的A、B两类食物做了两次实验。

实验还测定了糖和脂肪的消耗情况(图2)。

请据图分析回答问题:

(1)图1显示,吃B食物后,          浓度升高,引起          浓度升高。

(2)图1显示,长跑中,A、B两组胰岛素浓度差异逐渐          ,而血糖浓度差异却逐渐          ,A组血糖浓度相对较高,分析可能是肾上腺素和          也参与了对血糖的调节,且作用相对明显,这两种激素之间具有          作用。

(3)长跑中消耗的能量主要来自糖和脂肪。研究表明肾上腺素有促进脂肪分解的作用。从能量代谢的角度分析图2,A组脂肪消耗量比B组          ,由此推测A组糖的消耗量相对         

(4)通过检测尿中的尿素量,还可以了解运动员在长跑中          代谢的情况。

 

参考答案:

1.B              2.B              3.D             4.A

29.(12分)

    (1)生产者    第一营养级

    (2)自动调节(或自净化)

    (3)分解作用    异养厌氧型

    (4)入水口

30.(18分)

    (1)诱变

    (2)①两(或不同)    不能

    ②细胞质(或母系)

    (3)①高蛋白(纯合)植株    低蛋白植株(或非高蛋白植株)

    后代(或F1)表现型都是高蛋白植株

    ②测交方案:

    用F1与低蛋白植株杂交

    后代高蛋白植株和低蛋白植株的比例是1:1

    或自交方案:

    F1自交(或杂合高蛋白植株自交)

    后代高蛋白植株和低蛋白植株的比例是3:1

    ③实验结果    预期结果

31.(18分)

    (1)血糖    胰岛素

    (2)减小    增大    胰高血糖素    协同

    (3)高    减少

    (4)蛋白质

 

 

                                             

 

查看答案和解析>>

一:选择题

题号

1

2

3

4

5

6

7

8

答案代号

C

A

A

C

C

B

A

B

二.填空题:   9 .     10、   11、       12 . 60      

13、  2     14、()两条直线   15、  16    

1.C;        ,      

2、A;   显然为奇函数,且单调递增。于是 若,则,有,即,从而有.

反之,若,则,推出 ,即 。故选A。

3、A;     由 , 知   ;

4、C;     0

5、C;    

6、B;       

 ,  ;

7、A     把握住4,6,8三个面有一个共同的顶点这一个特点

8、B;    如下图,设,则

由平行四边形法则,知NP∥AB,所以,同理可得.故,选B.                          

 

9、2(略)

10、60;  力Fx)所作的功为

11、  从图中看出  ,

所以选A

 

12、; 根据题中的信息,可以把左边的式子归纳为从个球(n个白球,k个黑球)中取出m个球,可分为:没有黑球,一个黑球,……,k个黑球等类,故有种取法。

13、2;   由已知得   ,  ,

解得 

14、;两条直线;由 ,得 , ,

 ,;两条直线

15、16; 由可化为xy =8+x+y,x,y均为正实数

 xy =8+x+y(当且仅当x=y等号成立)即xy-2-8

可解得,即xy16故xy的最小值为16。

三、解答题:

16、(本小题满分12分)

解:

                                          ………………3分

(Ⅰ)函数的最小正周期,                  ………………5分

∴函数的单调递减区间为             …………7分

(Ⅱ)

 

 

 

 

 

 

                                                           ---------------12分

 

 

 

 

 

 

17、(本小题满分14分)

解: 将一颗骰子先后抛掷2次,此问题中含有36个等可能基本事件-----------1分

(1)      记“两数之和为8”为事件A,则事件A中含有5个基本事件,

所以P(A)=

答:两数之和为6的概率为。--------------------------------------- 4分

 (2)记“两数之和是3的倍数”为事件B,则事件B中含有12个基本事件,

所以P(B)=

答:两数之和是3的倍数的概率为。-------------------------------7分

(2)      记“向上的两数之积是6的倍数”为事件C,则事件C中含有其中的15个等可能基本事件,

所以P(C)=

答:两数之积是6的倍数的概率为。-------------------------------10分

(3)      基本事件总数为36,点(x,y),在圆x2+y2=25的内部记为事件D,则D包含13个事件,

所以P(D)=

答:点(x,y)在圆x2+y2=25的内部的概率。----------------------14分

 

18、(本小题满分13分)

解:,    -----------------2分

因为函数处的切线斜率为-3,

所以,即,------------------------3分

。------------------------4分

(1)函数时有极值,所以,-------5分

解得,------------------------------------------7分

所以.------------------------------------8分

(2)因为函数在区间上单调递增,所以导函数在区间上的值恒大于或等于零,------------------------------------10分

所以实数的取值范围为.----------------------------------13分

 

19、(本小题满分13分)

解(Ⅰ)在中,

中,

.---------------------------2分

∵平面平面,且交线为

平面

平面,∴.------------------------------------5分

(Ⅱ)设相交于点,由(Ⅰ)知

,∴平面

平面,∴平面平面,且交线为,---------7分

如图19-2,作,垂足为,则平面

连结,则是直线与平面所成的角.-------------------9分

由平面几何的知识可知,∴.--------------11分

中,

中,,可求得.∴

------------------------------------------------------------------------13分

 

20、(本题满分14分)

【解析】(I)因为边所在直线的方程为,且垂直,

所以直线的斜率为.又因为点在直线上,

所以边所在直线的方程为.-----------------3分

(II)由解得点的坐标为,          ------------4分

因为矩形两条对角线的交点为

所以为矩形外接圆的圆心.                         -----------------6分

从而矩形外接圆的方程为.----------------------9分

(III)因为动圆过点,所以是该圆的半径,又因为动圆与圆外切,

所以,即.------------------------11分

故点的轨迹是以为焦点,实轴长为的双曲线的左支.

因为实半轴长,半焦距

所以虚半轴长

从而动圆的圆心的轨迹方程为. -----------------14分

 

21、(本小题满分14分)

解:(Ⅰ)由题意    即

                                          ……………………2分

      ∵m>0且,∴m2为非零常数,

∴数列{an}是以m4为首项,m2为公比的等比数列                   …………4分

(Ⅱ)由题意

   ①             …………6分

①式两端同乘以2,得

  ②       …………7分

②-①并整理,得

 

  

   =

  

                     -----------------------------------------------10分

(Ⅲ)由题意

要使对一切成立,

即  对一切 成立,

①当m>1时,  成立;                   …………12分

②当0<m<1时,

对一切 成立,只需

解得 ,  考虑到0<m<1,    ∴0<m< 

综上,当0<m<或m>1时,数列{cn   }中每一项恒小于它后面的项. ----------14分

 


同步练习册答案