0  411571  411579  411585  411589  411595  411597  411601  411607  411609  411615  411621  411625  411627  411631  411637  411639  411645  411649  411651  411655  411657  411661  411663  411665  411666  411667  411669  411670  411671  411673  411675  411679  411681  411685  411687  411691  411697  411699  411705  411709  411711  411715  411721  411727  411729  411735  411739  411741  411747  411751  411757  411765  447090 

会用坐标变换法,求一条曲线按向量平移后所得的曲线方程

会把函数图像的平移问题转化为按向量平移的问题 .

 数学思想方法:化归思想、方程思想、待定系数法.

试题详情

点位置与点所成的比的关系:

,且的坐标分别为,则有

将点按向量平移后所得的点为,则

把函数的图像按平移,就相当于把函数的图像左右平移个单位,再上下平移个单位.

试题详情

(湖北文)设上的投影为轴上的投影为,且,则为          

 (全国Ⅰ)已知向量,则 

 垂直    不垂直也不平行    平行且同向  平行且反向

(北京文)已知向量.若向量,则实数   

(重庆文)已知向量,且,则

向量           

(山东)设向量,若表示向量

的有向线段首尾相接能构成四边形,则向量

             

(重庆)与向量的夹角相等,且模为的向量是

(辽宁)设,,,点是线段上的一个动点,,若,则实数的取值范围是

   

(全国Ⅱ)已知点.设的平分线

相交于,那么有,其中等于         

(天津)在直角坐标系中,已知点和点,若点的平分线上且,则           

(湖北文)设过点的直线分别与轴的正半轴和轴的正半轴交于

两点,点与点关于轴对称,为坐标原点,若

则点的轨迹方程是                

      

     

(全国Ⅲ)已知向量,且三点共线,则    

(山东)已知向量,且的值.

试题详情

三点共线的充要条件是               

            

 

如果,是平面内所有向量的一组基底,那么下列命题中正确的是

 若实数使,则

空间任一向量可以表示为,这里是实数

 对实数,向量不一定在平面

对平面内任一向量,使的实数有无数对

已知向量方向相反,且,那么向量的坐标是_   

已知,则与平行的单位向量的坐标为         

已知,求,并以为基底来表示

为正数,且,则的最大值为      

已知向量

,求

对一切实数都成立,求实数的范围

分别是正方形

两边的中点,求的值

试题详情

问题1.(全国Ⅱ)已知向量       

(Ⅰ)若,求;(Ⅱ)求的最大值.

问题2.已知,且,求实数

已知向量,的夹角为钝角,求的取值范围.

(新课程)若向量,则

     

问题3.已知点,试用向量方法求直线(为坐标原点)交点的坐标.

问题4.设椭圆方程为,过的直线交椭圆于两点,为坐标原点,动点满足,点的坐标为,当绕点旋转时.

求动点的轨迹方程;的最大值与最小值

试题详情

建立坐标系解决问题(数形结合);认清向量的方向求坐标;

试题详情

①若,则

②若,则

③若,,则

④若,则

重要不等式:,则

试题详情

(上海春)在中,有命题:①;②

③若,则为等腰三角形;④若

为锐角三角形.上述命题正确的是

①②       ①④       ②③      ②③④

(陕西)已知非零向量满足, 则等边三角形直角三角形等腰非等边三角形三边均不相等的三角形

(上海文)若向量的夹角为,则    

(浙江)若非零向量满足,则

  

(全国Ⅰ文)点所在平面内的一点,满足

,则点的                               

三个内角的角平分线的交点   三条边的垂直平分线的交点  

三条中线的交点        三条高的交点

(天津)如图,在中,

是边上一点,,则   

 

 

 

 

 

(重庆)如图,在四边形中,

的值为   

 

(辽宁)若向量不共线,,且,则向量的夹角为                

(湖南)设是非零向量,若函数的图象是一条直线,

则必有              

(四川)如图, 已知正六边形,下列向量的数量积中最大的是

  

(湖北文)已知非零向量,若互相垂直,则

                    

(浙江)设向量满足,若

的值是       

(全国Ⅰ文)已知向量满足,且,则的夹角为

                    

(北京)若都是非零向量,则“”是“”的

充分不必要条件必要不充分条件充分必要条件  既不充分也不必要条件

(北京)若,且,则向量的夹角为

                

(天津文)已知的夹角为,以为邻边作平行四边形,则此平行四边形的两条对角线中较短的一条的长度为        

试题详情

(届高三江西师大附中期中试题)若两个向量的夹角为,则称向量“”为“向量积”,其长度. 若,求    已知的夹角为,则上的投影为        

向量都是非零向量,且,求的夹角

已知两单位向量的夹角为,若,试求的夹角。

已知向量的夹角是,且,则     

设向量满足,则     

已知向量的方向相同,且,则       

中,的面积是,若,则                

已知为原点,点的坐标分别为,其中常数,点在线段上,且有,则的最大值为     

为平面上四个点,,且,则         

设两个向量,满足的夹角为,若向量与向量的夹角为钝角,求实数的取值范围.

(届高三湖北八校联考)在中,

边的长度;的值

试题详情

问题1.有下列命题:①;② ;③若

;④若,则当且仅当时成立;⑤

对任意向量都成立;⑦对任意向量,有

其中正确命题的序号是             

(福建)对于向量和实数,下列命题中真命题是

,则    ,则

,则    ,则

问题2.已知中,,则         

(浙江)已知平面上三点满足

的值等于      

已知是两个非零向量,且,求的夹角

(福建文)已知向量的夹角为,则

                  

 

问题3.(苏锡常镇模拟)已知平面上三个向量,它们之间的夹角均为.求证:,求的取值范围.

 

问题4. (湖北)如图,在中,已知,若

长为的线段以点为中点,问的夹角取何值时

的值最大?并求出这个最大值.

试题详情


同步练习册答案