0  420235  420243  420249  420253  420259  420261  420265  420271  420273  420279  420285  420289  420291  420295  420301  420303  420309  420313  420315  420319  420321  420325  420327  420329  420330  420331  420333  420334  420335  420337  420339  420343  420345  420349  420351  420355  420361  420363  420369  420373  420375  420379  420385  420391  420393  420399  420403  420405  420411  420415  420421  420429  447090 

11.2008淅江宁波)2008年5月1日,目前世界上最长的跨海大桥--杭州湾跨海大桥通车了.通车后,苏南A地到宁波港的路程比原来缩短了120千米.已知运输车速度不变时,行驶时间将从原来的3时20分缩短到2时.

(1)求A地经杭州湾跨海大桥到宁波港的路程.

(2)若货物运输费用包括运输成本和时间成本,已知某车货物从A地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?

(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?

试题详情

10.(2008山东烟台)如图,抛物线轴于A、B两点,交轴于M点.抛物线向右平移2个单位后得到抛物线轴于C、D两点.

(1)求抛物线对应的函数表达式;

(2)抛物线轴上方的部分是否存在点N,使以A,C,M,N为顶点的四边形是平行四边形.若存在,求出点N的坐标;若不存在,请说明理由;

(3)若点P是抛物线上的一个动点(P不与点A、B重合),那么点P关于原点的对称点Q是否在抛物线上,请说明理由.

试题详情

9.(2008山东烟台)如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2.

(1)求证:△BDE≌△BCF;

(2)判断△BEF的形状,并说明理由;

(3)设△BEF的面积为S,求S的取值范围.

试题详情

8. (2008浙江义乌)如图1所示,直角梯形OABC的顶点A、C分别在y轴正半轴与轴负半轴上.过点B、C作直线.将直线平移,平移后的直线轴交于点D轴交于点E

(1)将直线向右平移,设平移距离CD(t0),直角梯形OABC被直线扫过的面积(图中阴影部份)为关于的函数图象如图2所示, OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4.

①求梯形上底AB的长及直角梯形OABC的面积;

②当时,求S关于的函数解析式;

(2)在第(1)题的条件下,当直线向左或向右平移时(包括与直线BC重合),在直线AB上是否存在点P,使为等腰直角三角形?若存在,请直接写出所有满足条件的点P的坐标;若不存在,请说明理由.

试题详情

7.(2008浙江义乌)如图1,四边形ABCD是正方形,GCD边上的一个动点(点GC、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:

(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;

②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.

(2)将原题中正方形改为矩形(如图4-6),且AB=a,BC=b,CE=ka, CG=kb (ab,k0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.

(3)在第(2)题图5中,连结,且a=3,b=2,k=,求的值.

试题详情

6. (2008浙江金华)如图1,在平面直角坐标系中,己知ΔAOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连结AP,并把ΔAOP绕着点A按逆时针方向旋转.使边AO与AB重合.得到ΔABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使ΔOPD的面积等于,若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.

试题详情

5、(2007浙江金华)如图1,已知双曲线y=(k>0)与直线y=k′x交于A,B两点,点A在第一象限.试解答下列问题:(1)若点A的坐标为(4,2).则点B的坐标为    ;若点A的横坐标为m,则点B的坐标可表示为   

(2)如图2,过原点O作另一条直线l,交双曲线y=(k>0)于P,Q两点,点P在第一象限.①说明四边形APBQ一定是平行四边形;②设点A.P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出mn应满足的条件;若不可能,请说明理由.

试题详情

4.(08山东省日照市)在△ABC中,∠A=90°,AB=4,AC=3,MAB上的动点(不与AB重合),过M点作MNBCAC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AMx. 

(1)用含x的代数式表示△MNP的面积S;    

(2)当x为何值时,⊙O与直线BC相切?     

(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?

试题详情

3. (08浙江温州)如图,在中,分别是边的中点,点从点出发沿方向运动,过点,过点

,当点与点重合时,点停止运动.设

(1)求点的距离的长;

(2)求关于的函数关系式(不要求写出自变量的取值范围);

(3)是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由.

试题详情

2. (08浙江衢州)已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,),C(0,),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S;

(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式;

(2)当纸片重叠部分的图形是四边形时,求t的取值范围;

(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由.

 

试题详情


同步练习册答案