精英家教网 > 初中数学 > 题目详情
当x=(    )时,二次根式取最小值,其最小值为(    )

A.-1   0
B.1    
C.-2      1
相关习题

科目:初中数学 来源:同步题 题型:填空题

当x=(    )时,二次根式取最小值,其最小值为(    )。

查看答案和解析>>

科目:初中数学 来源:2012年黑龙江省哈尔滨市中考调研测试数学试卷(解析版) 题型:解答题

为了美化环境,计划将一个边长为4米的菱形草地ABCD分割成如图所示的四块,其中四边形AEPM和四边形NPFC均为菱形,且∠A=120°,若AE的长为x米,四边形BEPN和四边形DMPF的面积和为S平方米.
(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)根据(1)中的函数关系式,计算当x为何值时S最大,并求出最大值.
[参考公式:二次函数y=ax2+bx+c(a≠0),当x=-时,y最大(小)值=].

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

为了美化环境,计划将一个边长为4米的菱形草地ABCD分割成如图所示的四块,其中四边形AEPM和四边形NPFC均为菱形,且∠A=120°,若AE的长为x米,四边形BEPN和四边形DMPF的面积和为S平方米.
(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)根据(1)中的函数关系式,计算当x为何值时S最大,并求出最大值.
[参考公式:二次函数y=ax2+bx+c(a≠0),当x=-数学公式时,y最大(小)值=数学公式].

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

一块三角形废料如图所示,∠A=30°,∠C=90°,AB=6米.用这块废料剪出一个矩形CDEF,其中点D、E、F分别在AC、AB、BC上、设边AE的长为x米,矩形CDEF的面积为S平方米.
(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)根据(1)中的函数关系式,计算当x为何值时S最大,并求出最大值.
参考公式:二次函数y=ax2+bx+c(a≠0),当x=数学公式时,y最大(小)值=数学公式

查看答案和解析>>

科目:初中数学 来源:2012年黑龙江省哈尔滨市道外区中考数学二模试卷(解析版) 题型:解答题

一块三角形废料如图所示,∠A=30°,∠C=90°,AB=6米.用这块废料剪出一个矩形CDEF,其中点D、E、F分别在AC、AB、BC上、设边AE的长为x米,矩形CDEF的面积为S平方米.
(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)根据(1)中的函数关系式,计算当x为何值时S最大,并求出最大值.
参考公式:二次函数y=ax2+bx+c(a≠0),当x=时,y最大(小)值=

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•哈尔滨模拟)为了美化环境,计划将一个边长为4米的菱形草地ABCD分割成如图所示的四块,其中四边形AEPM和四边形NPFC均为菱形,且∠A=120°,若AE的长为x米,四边形BEPN和四边形DMPF的面积和为S平方米.
(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)根据(1)中的函数关系式,计算当x为何值时S最大,并求出最大值.
[参考公式:二次函数y=ax2+bx+c(a≠0),当x=-
b
2a
时,y最大(小)值=
4ac-b2
4a
].

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•道外区二模)一块三角形废料如图所示,∠A=30°,∠C=90°,AB=6米.用这块废料剪出一个矩形CDEF,其中点D、E、F分别在AC、AB、BC上、设边AE的长为x米,矩形CDEF的面积为S平方米.
(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)根据(1)中的函数关系式,计算当x为何值时S最大,并求出最大值.
参考公式:二次函数y=ax2+bx+c(a≠0),当x=-
b
2a
时,y最大(小)值=
4ac-b2
4a

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料,并解决后面给出的问题
例.给定二次函数y=(x-1)2+1,当t≤x≤t+1时,求y的函数值的最小值.
解:函数y=(x-1)2+1,其对称轴方程为x=1,顶点坐标为(1,1),图象开口向上.下面分类讨论:

(1)如图1所示,若顶点横坐标在范围t≤x≤t+1左侧时,即有1<t.此时y随x的增大而增大,当x=t时,函数取得最小值,y最小值=(t-1)2+1
(2)如图2所示,若顶点横坐标在范围t≤x≤t+1内时,即有t≤1≤t+1,解这个不等式,即0≤t≤1.此时当x=1时,函数取得最小值,y最小值=1;
(3)如图3所示,若顶点横坐标在范围t≤x≤t+1右侧时,有t+1<1,解不等式即得t<0.此时Y随X的增大而减小,当x=t+1时,函数取得最小值,y最小值=t2+1
综上讨论,当1<t时,函数取得最小值,y最小值=(t-1)2+1
此时当0≤t≤1时,函数取得最小值,y最小值=1.
当t<0时,函数取得最小值,y最小值=t2+1
根据上述材料,完成下列问题:
问题:求函数y=x2+2x+3在t≤x≤t+2时的最小值.

查看答案和解析>>


同步练习册答案