精英家教网 > 初中数学 > 题目详情
如图是函数y=x的图像,设点P关于x轴的对称点P'在y=x上,如果P点的横坐标为2.5,那么P'的纵坐标为


A.2.5
B.-2.5
C.-1
D.-0.5
相关习题

科目:初中数学 来源:2011-2012年河北省衡水市五校九年级第三次联考数学卷 题型:选择题

如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC的两边分别交于点M,N(点M在点N的上方),若△OMN的面积为S,直线l的运动时间为t 秒(0≤t≤4),则能大致反映S与t的函数关系的图像是(  )

 

查看答案和解析>>

科目:初中数学 来源:2011年河北省衡水市五校九年级下学期第三次月考数学卷 题型:选择题

 如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC的两边分别交于点M,N(点M在点N的上方),若△OMN的面积为S,直线l的运动时间为t 秒(0≤t≤4),则能大致反映S与t的函数关系的图像是(  )

 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC的两边分别交于点M,N(点M在点N的上方),若△OMN的面积为S,直线l的运动时间为t 秒(0≤t≤4),则能大致反映S与t的函数关系的图像是(  )

 

查看答案和解析>>

科目:初中数学 来源: 题型:

 如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC的两边分别交于点M,N(点M在点N的上方),若△OMN的面积为S,直线l的运动时间为t 秒(0≤t≤4),则能大致反映S与t的函数关系的图像是(  )

 

查看答案和解析>>

科目:初中数学 来源:解题升级  解题快速反应一典通  九年级级数学 题型:044

如图,已知正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C在y轴上,点B在函数y=(k>0,x>0)的图像上,过P(m,n)是函数y=的图像上任意一点,过点P分别作x轴、y轴的垂线,垂足分别为E、F,并设矩形OEPF在正方形OABC之外部分的面积为S.(1)求B点坐标和k的值;(2)当S=时,求点P的坐标;(3)写出S关于m的函数关系式.

查看答案和解析>>

科目:初中数学 来源:解题升级  解题快速反应一典通  九年级级数学 题型:013

反比例函数y=(k>0)在第一象限内的图像如图所示.P为该图像上任意一点,PQ垂直于x轴,垂足为Q.设△POQ的面积为S,则S的值与k之间的关系是

[  ]

A.S=
B.S=
C.S=k
D.S>k

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数的图像与x轴交于B(-2,0),C(4,0)两点,点E是对称轴的交点.

(1)求二次函数的解析表达式;

(2)T为对称轴上一动点,以点B为圆心,BT为半径作⊙B,写出直线CT与⊙B相切时,T点的坐标;

(3)若在x轴上方的P点为抛物线上的动点,且∠BPC为锐角,直接写出PE的取值范围.

(4)对于(1)中得到的关系式,若为整数,在使得为完全平方数的所有的值中,设的最大值为,最小值为,次小值为,(注:一个数如果是另一个整数的完全平方,那么就称这个数为完全平方数.)求的值.

y

 
 


查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数的图像与x轴交于B(-2,0),C(4,0)两点,点E是对称轴的交点.

(1)求二次函数的解析表达式;

(2)T为对称轴上一动点,以点B为圆心,BT为半径作⊙B,写出直线CT与⊙B相切时,T点的坐标;

(3)若在x轴上方的P点为抛物线上的动点,且∠BPC为锐角,直接写出PE的取值范围.

(4)对于(1)中得到的关系式,若为整数,在使得为完全平方数的所有的值中,设的最大值为,最小值为,次小值为,(注:一个数如果是另一个整数的完全平方,那么就称这个数为完全平方数.)求的值.

y

 
 


查看答案和解析>>

科目:初中数学 来源: 题型:

.如同,抛物线轴交于C、A两点,与y轴交于点B,OB=4点O关于直线AB的对称点为D,E为线段AB的中点.

(1) 分别求出点A、点B的坐标

(2) 求直线AB的解析式

(3) 若反比例函数的图像过点D,求值.

(4)两动点P、Q同时从点A出发,分别沿AB、AO方向向B、O移动,点P每秒移动1个单位,点Q

每秒移动个单位,设△POQ的面积为S,移动时间为t,问:S是否存在最大值?若存在,求出这个最大值,并求出此时的t值,若不存在,请说明理由.

 


查看答案和解析>>

科目:初中数学 来源:宁夏自治区中考真题 题型:解答题

如图,已知:一次函数:y=-x+4的图像与反比例函数:(x>0)的图像分别交于A、B两点,点M是一次函数图像在第一象限部分上的任意一点,过M分别向x轴、y轴作垂线,垂足分别为M1、M2,设矩形MM1OM2的面积为S1;点N为反比例函数图像上任意一点,过N分别向x轴、y轴作垂线,垂足分别为N1、N2,设矩形NN1ON2的面积为S2
(1)若设点M的坐标为(x,y),请写出S1关于x的函数表达式,并求x取何值时,S1的最大值;
(2)观察图形,通过确定x的取值,试比较S1、S2的大小。

查看答案和解析>>


同步练习册答案