精英家教网 > 初中数学 > 题目详情
已知三点M、N、P不在同一条直线上,且MN=4厘米,NP=3厘米,M、P两点间的距离为x厘米,那么x的取值范围是(     )。

A.0<x<3.5
B.1<x<7
C.1<x<4
D.3<x<7
相关习题

科目:初中数学 来源:2011-2012学年安徽阜阳市七年级数学下学期期末考试数学试卷(带解析) 题型:填空题

已知三点M、N、P不在同一条直线上,且MN=4厘米,NP=3厘米,M、P两点间的距离为x厘米,那么x的取值范围是          

查看答案和解析>>

科目:初中数学 来源:2011-2012学年安徽阜阳七年级下学期期末抽考数学试卷(带解析) 题型:填空题

已知三点M、N、P不在同一条直线上,且MN=4厘米,NP=3厘米,M、P两点间的距离为x厘米,那么x的取值范围是          

查看答案和解析>>

科目:初中数学 来源:2011-2012学年安徽阜阳七年级下学期期末抽考数学试卷(解析版) 题型:填空题

已知三点M、N、P不在同一条直线上,且MN=4厘米,NP=3厘米,M、P两点间的距离为x厘米,那么x的取值范围是          

 

查看答案和解析>>

科目:初中数学 来源:2014届安徽阜阳市七年级数学下学期期末考试数学试卷(解析版) 题型:填空题

已知三点M、N、P不在同一条直线上,且MN=4厘米,NP=3厘米,M、P两点间的距离为x厘米,那么x的取值范围是          

 

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

已知三点M、N、P不在同一条直线上,且MN=4厘米,NP=3厘米,M、P两点间的距离为x厘米,那么x的取值范围是________。

查看答案和解析>>

科目:初中数学 来源:重庆市期末题 题型:填空题

已知三点M、N、P不在同一条直线上,且MN=4厘米,NP=3厘米,M、P两点间的距离为x厘米,那么x的取值范围是(     )。

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.
如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动、DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5)解答下列问题:
(1)当t为何值时,点A在线段PQ的垂直平分线上?
(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由;
(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:RT△ABC与RT△DEF中,∠ACB=∠EDF=90°,∠DEF=45°,EF=8cm,AC=16cm,BC=12cm.现将RT△ABC和RT△DEF按图1的方式摆放,使点C与点E重合,点B、C(E)、F在同一条直线上,并按如下方式运动.
运动一:如图2,△ABC从图1的位置出发,以1cm/s的速度沿EF方向向右匀速运动,DE与AC相交于点Q,当点Q与点D重合时暂停运动;
运动二:在运动一的基础上,如图3,RT△ABC绕着点C顺时针旋转,CA与DF交于点Q,CB与DE交于点P,此时点Q在DF上匀速运动,速度为
2
cm/s
,当QC⊥DF时暂停旋转;
运动三:在运动二的基础上,如图4,RT△ABC以1cm/s的速度沿EF向终点F匀速运动,直到点C与点F重合时为止.
设运动时间为t(s),中间的暂停不计时,
解答下列问题
(1)在RT△ABC从运动一到最后运动三结束时,整个过程共耗时
 
s;
(2)在整个运动过程中,设RT△ABC与RT△DEF的重叠部分的面积为S(cm2),求S与t之间的函数关系式,并直接写出自变量t的取值范围;
(3)在整个运动过程中,是否存在某一时刻,点Q正好在线段AB的中垂线上,若存在,求出此时t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,一座商场大楼的顶部竖直立有一个矩形广告牌,小红同学在地面上选择了在一条直线上的三点A(A为楼底)、D、E,她在D处测得广告牌顶端C的仰角为60°,在E两处测得商场大楼楼顶B 的仰角为45°,DE=5米.已知,广告牌的高度BC=2.35米,求这座商场大楼的高度AB(
3
取1.73,
2
取1.41,小红的身高不计,结果保留整数).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,正方形ABCD中,点E、F分别在边BC、CD上,且∠EAF=45°,AG⊥EF于G,EG=2,FG=3,求AG的边长.小萍同学灵活运用旋转的知识,将图形进行旋转变换,巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题:
(1)把△ADF绕点A顺时针旋转90°,得△ABH,请在图中画出旋转后的图形;
(2)判断H、B、E三点是否在一条直线上,若在,请证明:△AEF≌△AEH;若不在,请说明理由;
(3)设AG=x,利用勾股定理,建立关于x的方程模型,求出x的值.

查看答案和解析>>


同步练习册答案