精英家教网 > 初中数学 > 题目详情
若多项式,其中A、B、C为常数,则A+B+C的值是(        )。

A.3
B.4
C.5
D.6
相关习题

科目:初中数学 来源:重庆市期中题 题型:填空题

若多项式,其中A、B、C为常数,则A+B+C的值是(        )。

查看答案和解析>>

科目:初中数学 来源: 题型:

16、若多项式x2-2x+3=A(x+1)2+B(x+1)+C,其中A、B、C为常数,则A+B+C的值是
-1

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若多项式x2-2x+3=A(x+1)2+B(x+1)+C,其中A、B、C为常数,则A+B+C的值是______.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

若多项式x2-2x+3=A(x+1)2+B(x+1)+C,其中A、B、C为常数,则A+B+C的值是________.

查看答案和解析>>

科目:初中数学 来源: 题型:

日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4-y4,因式分解的结果(x-y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x-y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为其中一个六位数的密码.对于多项式4x4y-5x2y-9y,取x=5,y=5时,用上述方法产生的所有密码中最小的一个是
132657
132657

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4-y4,因式分解的结果(x-y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x-y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为其中一个六位数的密码.对于多项式4x4y-5x2y-9y,取x=5,y=5时,用上述方法产生的所有密码中最小的一个是______.

查看答案和解析>>

科目:初中数学 来源:2008年安徽省合肥市第168中学自主招生考试数学试卷(解析版) 题型:填空题

日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4-y4,因式分解的结果(x-y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x-y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为其中一个六位数的密码.对于多项式4x4y-5x2y-9y,取x=5,y=5时,用上述方法产生的所有密码中最小的一个是   

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4-y4,因式分解的结果(x-y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x-y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为其中一个六位数的密码.对于多项式4x4y-5x2y-9y,取x=5,y=5时,用上述方法产生的所有密码中最小的一个是________.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

问题提出
我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.
问题解决
如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.

解:由图可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
类比应用
【小题1】已知:多项式M =2a2-a+1 ,N =a2-2a.试比较M与N的大小.
【小题2】已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边
满足a <b < c ,现将△ABC 补成长方形,使得△ABC的两个顶
点为长方形的两个端点,第三个顶点落在长方形的这一边的对边上。                     
①这样的长方形可以画       个;
②所画的长方形中哪个周长最小?为什么?

拓展延伸                                                                                               
已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a <b < c ,画其BC边上的内接正方形EFGH , 使E、F两点在边BC上,G、H分别在边AC、AB上,同样还可画AC、AB边上的内接正方形,问哪条边上的内接正方形面积最大?为什么?

查看答案和解析>>

科目:初中数学 来源:2012届江苏盐城盐都区九年级下学期期中质量检测数学试卷(带解析). 题型:解答题

问题提出
我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.
问题解决
如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.

解:由图可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
类比应用
【小题1】已知:多项式M =2a2-a+1 ,N =a2-2a.试比较M与N的大小.
【小题2】已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边
满足a <b < c ,现将△ABC 补成长方形,使得△ABC的两个顶
点为长方形的两个端点,第三个顶点落在长方形的这一边的对边上。                     
①这样的长方形可以画       个;
②所画的长方形中哪个周长最小?为什么?

拓展延伸                                                                                               
已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a <b < c ,画其BC边上的内接正方形EFGH , 使E、F两点在边BC上,G、H分别在边AC、AB上,同样还可画AC、AB边上的内接正方形,问哪条边上的内接正方形面积最大?为什么?

查看答案和解析>>


同步练习册答案