精英家教网 > 初中数学 > 题目详情
在三角形纸片ABC中,∠ACB=90,BC=3,AB=6,在AC上取一点E, 以BE为折痕,使AB一部分与BC重合,A与BC延长线上的点D重合, 则CE的长度为


A 3
B 6
C
D 2
相关习题

科目:初中数学 来源:河北省模拟题 题型:单选题

在三角形纸片ABC中,∠ACB=90,BC=3,AB=6,在AC上取一点E, 以BE为折痕,使AB一部分与BC重合,A与BC延长线上的点D重合, 则CE的长度为
[     ]
A 3
B 6
C
D 2

查看答案和解析>>

科目:初中数学 来源:专项题 题型:解答题

如图,等腰直角三角形纸片ABC中,AC=BC=4,∠ACB=90°,直角边AC在x轴上,B点在第二象限,A(1,0),AB交y轴于E,将纸片过E点折叠使BE与EA所在直线重合,得到折痕EF(F在x轴上),再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA平移,至B点到达A点停止。设平移时间为t(s),移动速度为每秒1个单位长度,平移中四边形BCFE与△AEF重叠的面积为S。
(1)求折痕EF的长;
(2)是否存在某一时刻t使平移中直角顶点C经过抛物线的顶点?若存在,求出t值;若不存在,请说明理由;
(3)直接写出S与t的函数关系式及自变量t的取值范围。

查看答案和解析>>

科目:初中数学 来源:天津模拟题 题型:解答题

如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6。沿斜边AB的中线CD把这张纸片剪成
两个三角形(如图2所示)。将纸片沿直线方向平移(点始终在同一直线上),当点与点B重合时,停止平移。在平移的过程中,交于点E,分别交于点F、P。
(1)当平移到如图3所示位置时,猜想的数量关系,并证明你的猜想;
(2)设平移距离为x,重复部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;
(3)对于(2)中的结论是否存在这样的x,使得重复部分面积等于原△ABC纸片面积的?若存在,请求出x的值;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

数学活动——求重叠部分的面积。

问题情境:数学活动课上,老师出示了一个问题:

如图,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合,DE经过点C,DF交AC于点G。

求重叠部分(△DCG)的面积。

(1)独立思考:请解答老师提出的问题。

(2)合作交流:“希望”小组受此问题的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图(2),你能求出重叠部分(△DGH)的面积吗?请写出解答过程。

(3)提出问题:老师要求各小组向“希望”小组学习,将△DEF绕点D旋转,再提出一个求重叠部分面积的问题。“爱心”小组提出的问题是:如图(3),将△DEF绕点D旋转,DE,DF分别交AC于点M,N,使DM=MN求重叠部分(△DMN)的面积、

任务:①请解决“爱心”小组所提出的问题,直接写出△DMN的面积是    

②请你仿照以上两个小组,大胆提出一个符合老师要求的问题,并在图中画出图形,标明字母,不必解答(注:也可在图(1)的基础上按顺时针方向旋转)。

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(山西卷)数学(解析版) 题型:解答题

数学活动——求重叠部分的面积。

问题情境:数学活动课上,老师出示了一个问题:

如图(1),将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合,DE经过点C,DF交AC于点G。

求重叠部分(△DCG)的面积。

(1)独立思考:请解答老师提出的问题。

(2)合作交流:“希望”小组受此问题的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图(2),你能求出重叠部分(△DGH)的面积吗?请写出解答过程。

(3)提出问题:老师要求各小组向“希望”小组学习,将△DEF绕点D旋转,再提出一个求重叠部分面积的问题。“爱心”小组提出的问题是:如图(3),将△DEF绕点D旋转,DE,DF分别交AC于点M,N,使DM=MN,求重叠部分(△DMN)的面积。

任务:①请解决“爱心”小组所提出的问题,直接写出△DMN的面积是    .

②请你仿照以上两个小组,大胆提出一个符合老师要求的问题,并在图中画出图形,标明字母,不必解答(注:也可在图(1)的基础上按顺时针方向旋转)。

 

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

数学活动——求重叠部分的面积。
问题情境:数学活动课上,老师出示了一个问题:

如图(1),将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合,DE经过点C,DF交AC于点G。
求重叠部分(△DCG)的面积。
(1)独立思考:请解答老师提出的问题。
(2)合作交流:“希望”小组受此问题的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图(2),你能求出重叠部分(△DGH)的面积吗?请写出解答过程。
(3)提出问题:老师要求各小组向“希望”小组学习,将△DEF绕点D旋转,再提出一个求重叠部分面积的问题。“爱心”小组提出的问题是:如图(3),将△DEF绕点D旋转,DE,DF分别交AC于点M,N,使DM=MN,求重叠部分(△DMN)的面积。
任务:①请解决“爱心”小组所提出的问题,直接写出△DMN的面积是   .
②请你仿照以上两个小组,大胆提出一个符合老师要求的问题,并在图中画出图形,标明字母,不必解答(注:也可在图(1)的基础上按顺时针方向旋转)。

查看答案和解析>>

科目:初中数学 来源:重庆市中考真题 题型:解答题

如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6,沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图所示),将纸片△AC1D1沿直线D2B(AB)方向平移(点A,D1,D2,B始终在同一直线上),当点D1于点B重合时,停止平移,在平移过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P。
(1)当△AC1D1平移到如图3所示的位置时,猜想图中的D1E与D2F的数量关系,并证明你的猜想;
(2)设平移距离D2D1为x,△AC1D1与△BC2D2重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;
(3)对于(2)中的结论是否存在这样的x的值;若不存在,请说明理由。

查看答案和解析>>


同步练习册答案