精英家教网 > 初中数学 > 题目详情
直角梯形的定义是有一个角是直角的梯形叫直角梯形

A.正确
B.错误
相关习题

科目:初中数学 来源: 题型:

如图1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,操作示例:我们可以取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新的图形(如图2).
思考发现:小明在操作后发现,该剪拼方法就是先将△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上.又因为在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD和DF在同一条直线上,那么构成的新图形是一个四边形,进而根据平行四边形的定义,可以得出四边形ABEF是一个平行四边形.
实践探究:
(1)类比图2的剪拼方法,请你分别就图3和图4的两种情形沿一条直线进行剪切,画出剪拼成一个平行四边形的示意图.
联想拓展:小明探究后发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.
(2)如图5的多边形ABCDE中,AE∥CD,若连接AC,则恰有AC∥ED.请你象上面剪法一样沿一条直线进行剪切,将多边形ABCDE拼成一个平行四边形,请你在图5中画出剪拼的示意图,并简要写明剪拼方法(不需证明).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,操作示例:我们可以取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新的图形(如图2).
思考发现:小明在操作后发现,该剪拼方法就是先将△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上.又因为在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD和DF在同一条直线上,那么构成的新图形是一个四边形,进而根据平行四边形的定义,可以得出四边形ABEF是一个平行四边形.
实践探究:
(1)类比图2的剪拼方法,请你分别就图3和图4的两种情形沿一条直线进行剪切,画出剪拼成一个平行四边形的示意图.
联想拓展:小明探究后发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.
(2)如图5的多边形ABCDE中,AE∥CD,若连接AC,则恰有AC∥ED.请你象上面剪法一样沿一条直线进行剪切,将多边形ABCDE拼成一个平行四边形,请你在图5中画出剪拼的示意图,并简要写明剪拼方法(不需证明).
作业宝

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在直角梯形ABCD中,ADBC,∠B=∠A=90°,操作示例:我们可以取直角梯形ABCD的非直角腰CD的中点P,过点P作PEAB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新的图形(如图2).
思考发现:小明在操作后发现,该剪拼方法就是先将△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上.又因为在梯形ABCD中,ADBC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD和DF在同一条直线上,那么构成的新图形是一个四边形,进而根据平行四边形的定义,可以得出四边形ABEF是一个平行四边形.
实践探究:
(1)类比图2的剪拼方法,请你分别就图3和图4的两种情形沿一条直线进行剪切,画出剪拼成一个平行四边形的示意图.
联想拓展:小明探究后发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.
(2)如图5的多边形ABCDE中,AECD,若连接AC,则恰有ACED.请你象上面剪法一样沿一条直线进行剪切,将多边形ABCDE拼成一个平行四边形,请你在图5中画出剪拼的示意图,并简要写明剪拼方法(不需证明).

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

下列语句属于定义的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在梯形ABCD中,AD∥BC,AB=CD=5,AD=6,BC=12,点E在AD边上,且AE:ED=1:2,连精英家教网接CE,点P是AB边上的一个动点,(P不与A,B重合)过点P作PQ∥CE,交BC于Q,设BP=x,CQ=y,
(1)求cosB的值;
(2)求y与x的函数解析式,并写出函数的定义域;
(3)连接EQ,试探索△EQC有无可能是直角三角形?若可能,试求出x的值;若不能,请简要说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年上海市宝山区中考数学二模试卷(解析版) 题型:解答题

已知:如图,在梯形ABCD中,AD∥BC,AB=CD=5,AD=6,BC=12,点E在AD边上,且AE:ED=1:2,连接CE,点P是AB边上的一个动点,(P不与A,B重合)过点P作PQ∥CE,交BC于Q,设BP=x,CQ=y,
(1)求cosB的值;
(2)求y与x的函数解析式,并写出函数的定义域;
(3)连接EQ,试探索△EQC有无可能是直角三角形?若可能,试求出x的值;若不能,请简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在梯形ABCD中,AD∥BC,AB=CD=5,AD=6,BC=12,点E在AD边上,且AE:ED=1:2,连接CE,点P是AB边上的一个动点,(P不与A,B重合)过点P作PQ∥CE,交BC于Q,设BP=x,CQ=y,
(1)求cosB的值;
(2)求y与x的函数解析式,并写出函数的定义域;
(3)连接EQ,试探索△EQC有无可能是直角三角形?若可能,试求出x的值;若不能,请简要说明理由.

查看答案和解析>>

科目:初中数学 来源:上海期末题 题型:解答题

已知:如图,在梯形ABCD中,AD∥BC,AB=CD=5,AD=6,BC=12,点E在AD边上,且AE:ED=1:2,连接CE,点P是AB边上的一个动点,(P不与A,B重合)过点P作PQ∥CE,交BC于Q,设BP=x,CQ=y。
(1)求cosB的值;
(2)求y与x的函数解析式,并写出函数的定义域;
(3)连接EQ,试探索△EQC有无可能是直角三角形,若可能,试求出x的值,若不能,请简要说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

22、要想说明结论:“在一个梯形中,如果同一底边上的两个内角相等,那么另一条底边的两个内角也相等”,以下有三种方法,先看方法一:
如图:

因为四边形ABCD是梯形,
所以AB∥CD,(梯形的定义)
所以∠A+∠D=180°,∠B+∠C=180度.(两直线平行,同旁内角互补)
又因为∠A=∠B,(已知)
所以∠C=∠D.
方法二和方法三如图所示

用了作垂线的方法,请你根据图示,选择其中一种方法说明梯形中如果∠DAB=∠ABC,那么∠ADC=∠BCD.(只选一种方法即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

5、下面四个定义中不正确的是(  )

查看答案和解析>>


同步练习册答案