精英家教网 > 初中数学 > 题目详情
如下图,在四边形ABCD中,因为AD∥CD,AB∥CD,所以四边形ABCD是


A.平行四边形 
B.矩形  
C.菱形  
D.正方形
相关习题

科目:初中数学 来源:期末题 题型:单选题

如下图,在四边形ABCD中,因为AD∥CD,AB∥CD,所以四边形ABCD是
[     ]
A.平行四边形 
B.矩形  
C.菱形  
D.正方形

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图,在四边形ABCD中,∠A=104°-∠2,∠ABC=76°+∠2,BD⊥CD于D,EF⊥CD于F.
求证:∠1=∠2.请你完成下面证明过程.
证明:因为∠A=104°-∠2,∠ABC=76°+∠2,(________)
所以∠A+∠ABC=104°-∠2+76°+∠2,(等式性质)
即∠A+∠ABC=180°
所以AD∥BC,(________)
所以∠1=∠DBC,(________)
因为BD⊥DC,EF⊥DC,(________)
所以∠BDC=90°,∠EFC=90°,(________)
所以∠BDC=∠EFC,
所以BD∥________,(________)
所以∠2=∠DBC,(________)
所以∠1=∠2(________).

查看答案和解析>>

科目:初中数学 来源:广东省期末题 题型:解答题

如图,在四边形ABCD中,∠A=104°-∠2,∠ABC=76°+∠2,BD⊥CD于D,EF⊥CD于F。
求证:∠1=∠2。
请你完成下面证明过程。
证明:因为∠A=104°-∠2,∠ABC=76°+∠2,(______)
所以 ∠A+∠ABC=104°-∠2+76°+∠2, (等式性质)
即∠A+∠ABC=180°
所以 AD∥BC,(_______)
所以∠1=∠DBC,(______)
因为BD⊥DC,EF⊥DC,(______)
所以∠BDC=90°,∠EFC=90°,(_______)
所以∠BDC=∠EFC,
所以BD∥______,(_____)
所以∠2=∠DBC,(_____)
所以∠1=∠2 (_______)。

查看答案和解析>>

科目:初中数学 来源: 题型:

19、如图,在四边形ABCD中,∠A=104°-∠2,∠ABC=76°+∠2,BD⊥CD于D,EF⊥CD于F.
求证:∠1=∠2.请你完成下面证明过程.
证明:因为∠A=104°-∠2,∠ABC=76°+∠2,(
已知

所以∠A+∠ABC=104°-∠2+76°+∠2,(等式性质)
即∠A+∠ABC=180°
所以AD∥BC,(
同旁内角互补,两直线平行

所以∠1=∠DBC,(
两直线平行,内错角相等

因为BD⊥DC,EF⊥DC,(
已知

所以∠BDC=90°,∠EFC=90°,(
垂线的定义

所以∠BDC=∠EFC,
所以BD∥
EF
,(
同位角相等,两直线平行

所以∠2=∠DBC,(
两直线平行,同位角相等

所以∠1=∠2(
等量代换
).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图(1),在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c.
操作示例
我们可以取直角梯形ABCD的腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新图形.(如图2)
思考发现  
小敏在操作后发现,该剪拼方法就是将△PEC绕点P逆时针旋转180°到△PED的位置,易知PE与PF在同一直线上,又因为在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD和DF在同一直线上,那么构成的新图形是一个四边形,而且进一步可证得,该四边形是一个特殊的平行四边形--矩形.
实践探究
(1)矩形ABEF的面积是
 
.(用含a、b、c的式子表示)
(2)类比图(2)的剪接办法,请你就图(3)和图(4)中的两种情形分别画出剪拼成一个平行四边形的示意图.(注:图(3)和图(4)中的四边形均为梯形)
精英家教网
解决问题
小明原来有一块七巧板,形状为平行四边形ACDE,如图(5)所示,不小心损坏了一条边变成了五边形ABCDE的形状如图(6)所示,小明现在打算将图(6)中五边形在不改变其面积的前提下通过裁剪与拼接变成一个平行四边形,请你帮他画出剪接的示意图,并说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源:2010年河北省石家庄市第42中学中考数学二模试卷(解析版) 题型:解答题

如图(1),在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c.
操作示例
我们可以取直角梯形ABCD的腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新图形.(如图2)
思考发现  
小敏在操作后发现,该剪拼方法就是将△PEC绕点P逆时针旋转180°到△PED的位置,易知PE与PF在同一直线上,又因为在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD和DF在同一直线上,那么构成的新图形是一个四边形,而且进一步可证得,该四边形是一个特殊的平行四边形--矩形.
实践探究
(1)矩形ABEF的面积是______.(用含a、b、c的式子表示)
(2)类比图(2)的剪接办法,请你就图(3)和图(4)中的两种情形分别画出剪拼成一个平行四边形的示意图.(注:图(3)和图(4)中的四边形均为梯形)

解决问题
小明原来有一块七巧板,形状为平行四边形ACDE,如图(5)所示,不小心损坏了一条边变成了五边形ABCDE的形状如图(6)所示,小明现在打算将图(6)中五边形在不改变其面积的前提下通过裁剪与拼接变成一个平行四边形,请你帮他画出剪接的示意图,并说明理由.

查看答案和解析>>

科目:初中数学 来源:河北省石家庄市42中2010届初三毕业班第二次模拟考试数学试题 题型:059

如图,在直角梯形ABCD中,ADBC,∠B=∠A=90°,ADaBCbAB=c

操作示例

我们可以取直角梯形ABCD的腰CD的中点P,过点PPEAB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新图形.(如图1)

思考发现

小敏在操作后发现,该剪拼方法就是将△PEC绕点P逆时针旋转180°到△PED的位置,易知PEPF在同一直线上,又因为在梯形ABCD中,ADBC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以ADDF在同一直线上,那么构成的新图形是一个四边形,而且进一步可证得,该四边形是一个特殊的平行四边形——矩形.

实践探究

(1)矩形ABEF的面积是________.(用含a、b、c的式子表示)

(2)类比图(1)的剪接办法,请你就图(2)和图(3)中的两种情形分别画出剪拼成一个平行四边形的示意图.(注:图(2)和图(3)中的四边形均为梯形)

解决问题

小明原来有一块七巧板,形状为平行四边形ACDE,如图(4)所示,不小心损坏了一条边变成了五边形ABCDE的形状如图(5)所示,小明现在打算将图(5)中五边形在不改变其面积的前提下通过裁剪与拼接变成一个平行四边形,请你帮他画出剪接的示意图,并说明理由.

查看答案和解析>>


同步练习册答案