精英家教网 > 初中数学 > 题目详情
已知△ABC,有如下三种说法:
(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°∠A;
(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;
(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°-∠A.

上述说法正确的个数是

A.0
B.1
C.2
D.3
相关习题

科目:初中数学 来源: 题型:

24、操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.
探究:线段BM、MN、NC之间的关系,并加以证明.
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明.
注意:选取①完成证明得10分;选取②完成证明得5分.
AN=NC(如图②);②DM∥AC(如图③).
附加题:若点M、N分别是射线AB、CA上的点,其它条件不变,再探线段BM、MN、NC之间的关系,在图④中画出图形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,过△ABC顶点A作BC边上的高AD和中线AE,点D是垂足,点E是BC中点,规定λA=
DEBE
.特别地,当D、E重合时,规定λA=0.另外对λB、λC也作类似规定.

(1)①当△ABC中,AB=AC时,则λA=
0
0
;②当△ABC中,λAB=0时,则△ABC的形状是
等边三角形
等边三角形

(2)如图2,在Rt△ABC中,∠A=30°,求λA和λC的值;
(3)如图3,正方形网格中,格点△ABC的λA=
2
2

(4)判断下列三种说法的正误(正确的打“√”错误的打“×”)
①若△ABC中λA<1,则△ABC为锐角三角形
×
×

②若△ABC中λA=1,则△ABC为直角三角形

③若△ABC中λA>1,则△ABC为钝角三角形

(5)通过本题解答,同学们应该有这样的认识:一个无论多么陌生、多么综合的问题,其实都来自于书本已学的基础知识.因此,我们今后应重视基础知识的学习;同时在解决问题时或者解决问题后,应该思考该问题的本质和目的:①巩固哪些基础知识;②培养我们哪些方面能力;③向我们渗透哪些数学思想.本题之所以是一道综合题,就是因为涉及到的知识点多、面广.下面就请你谈谈本题中所用到的、已学过的性质、定理、公理或判定等.(至少列举两条)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.
探究:线段BM、MN、NC之间的关系,并加以证明.
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明.
注意:选取①完成证明得10分;选取②完成证明得5分.
AN=NC(如图②);②DM∥AC(如图③).
附加题:若点M、N分别是射线AB、CA上的点,其它条件不变,再探线段BM、MN、NC之间的关系,在图④中画出图形,并说明理由.

查看答案和解析>>

科目:初中数学 来源:辽宁省中考真题 题型:解答题

操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN。
探究:线段BM、MN、NC之间的关系,并加以证明。
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);
(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明。
①AN=NC(如图②);
②DM∥AC(如图③)。
附加题:若点M、N分别是射线AB、CA上的点,其它条件不变,再探线段BM、MN、NC之间的关系,在图④中画出图形,并说明理由。

查看答案和解析>>

科目:初中数学 来源:2008-2009学年九年级数学期末综合测试(2)(解析版) 题型:解答题

操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.
探究:线段BM、MN、NC之间的关系,并加以证明.
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明.
注意:选取①完成证明得10分;选取②完成证明得5分.
AN=NC(如图②);②DM∥AC(如图③).
附加题:若点M、N分别是射线AB、CA上的点,其它条件不变,再探线段BM、MN、NC之间的关系,在图④中画出图形,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年辽宁省大连市旅顺口区中考数学试卷(课标卷)(解析版) 题型:解答题

(2006•旅顺口区)操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.
探究:线段BM、MN、NC之间的关系,并加以证明.
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明.
注意:选取①完成证明得10分;选取②完成证明得5分.
AN=NC(如图②);②DM∥AC(如图③).
附加题:若点M、N分别是射线AB、CA上的点,其它条件不变,再探线段BM、MN、NC之间的关系,在图④中画出图形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网在八年级上册我们已经知道三角形的中位线具有如下性质:
三角形的中位线平行于第三边,并且等于它的一半.
如图所示,已知△ABC和下列四种说法:
①D是AB中点;②E是AC中点;③DE=
12
BC;④DE∥BC.
请你以其中的两种说法为条件(①和②不能同时作为条件),其余两种说法为结论,构造一个命题;并判定你所构造的命题是否正确.如果正确请说明理由;如果不正确,请举出反例.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在八年级上册我们已经知道三角形的中位线具有如下性质:
三角形的中位线平行于第三边,并且等于它的一半.
如图所示,已知△ABC和下列四种说法:
①D是AB中点;②E是AC中点;③DE=数学公式BC;④DE∥BC.
请你以其中的两种说法为条件(①和②不能同时作为条件),其余两种说法为结论,构造一个命题;并判定你所构造的命题是否正确.如果正确请说明理由;如果不正确,请举出反例.

查看答案和解析>>

科目:初中数学 来源:期末题 题型:单选题

已知△ABC,有如下三种说法:
(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°∠A;
(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;
(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°-∠A.
上述说法正确的个数是
[     ]
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:初中数学 来源:2006年辽宁省大连市旅顺口区初中毕业升学统一考试试题数学试卷 题型:059

操作:如图,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN

探究:线段BM、MN、NC之间的关系,并加以证明.

说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);

(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明.

注意:选取①完成证明得10分;选取②完成证明得5分.

①AN=NC(如图);

②DM∥AC(如图).

若点M、N分别是射线AB、CA上的点,其它条件不变,再探线段BM、MN、NC之间的关系,在图中画出图形,并说明理由.

查看答案和解析>>


同步练习册答案