精英家教网 > 初中数学 > 题目详情
如图所示,在△ABC中,DEFG是正方形,D、E在BC边上,G、F分别在AB、AC边上,BC=a,BC边上的高为h,则正方形DEFG的边长为


A.
B.
C.
D.
相关习题

科目:初中数学 来源:山东省期中题 题型:单选题

如图所示,在△ABC中,DEFG是正方形,D、E在BC边上,G、F分别在AB、AC边上,BC=a,BC边上的高为h,则正方形DEFG的边长为
[     ]
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源:山东省期中题 题型:单选题

如图所示,在△ABC中,DEFG是正方形,D、E在BC边上,G、F分别在AB、AC边上,BC=a,BC边上的高为h,则正方形DEFG的边长为
[     ]
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源:鼎尖助学系列—同步练习(数学 八年级下册)、函数及其图象 相似三角形的应用 题型:044

如图①、②,Rt△ABC≌Rt△A′B′C′,∠C=∠C′=90°,AC=6,BC=8,分别在两个三角形中画如图所示的正方形DEFG和正方形C′MNP.

(1)

通过计算比较一下,哪个正方形边长大?

(2)

如图③,若在与图①同样大小的直角三角形中画矩形,使矩形的长是宽的2倍,求该矩形的宽.

查看答案和解析>>

科目:初中数学 来源: 题型:

ABC是一块等边三角形的废铁片,利用其剪裁一个正方形DEFG,使正方形的一条边DE落在BC上,顶点FG分别落在ACAB上.

   Ⅰ.证明:△BDG≌△CEF

Ⅱ.探究:怎样在铁片上准确地画出正方形.

小聪和小明各给出了一种想法,请你在Ⅱa和Ⅱb的两个问题中选择一个你喜欢的问题解答

a.小聪想:要画出正方形DEFG,只要能计算出正方形的边长就能求出BDCE的长,从而确定D点和E点,再画正方形DEFG就容易了.

设△ABC的边长为2 ,请你帮小聪求出正方形的边长(结果用含根号的式子表示,不要求分母有理化) .

b.小明想:不求正方形的边长也能画出正方形. 具体作法是:

      ①在AB边上任取一点G’,如图作正方形G’D’E’F’

②连结BF’并延长交ACF

③作FEF’E’BCEFGFG′交ABGGDG’D’BCD,则四边形DEFG即为所求.

你认为小明的作法正确吗?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.
(Ⅰ)△ABC的面积等于________;
(Ⅱ)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明)________.

查看答案和解析>>

科目:初中数学 来源:2013年天津市中考数学试卷 (解析版) 题型:填空题

如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.
(Ⅰ)△ABC的面积等于   
(Ⅱ)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明)   

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•天津)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.
(Ⅰ)△ABC的面积等于
6
6

(Ⅱ)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明)
取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求
取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料,解答问题.
已知:锐角△ABC,如图,求作:正方形DEFG,使D、E落在BC边上,F、G分别落在AC、AB边上.
作法:(1)画一个有三个顶点落在△ABC两边上的正方形D1、E1、F1、G1(如图所示);
(2)连接BF,并延长交AC于点F;
(3)过点F作EF⊥BC于点E;
(4)过F作FG∥BC,交AB于点G;
(5)过点G作GD⊥BC于点D;则四边形DEFG即为所求作的正方形.
问题:(1)说明上述所求作四边形DEFG为正方形的理由.
(2)在△ABC中,如果BC=120,BC边上的高为80,求上述正方形DEFG的边长.
(3)若把(2)中的正方形DEFG改为矩形DEFG,且GF=
12
DG,其他条件不变,此时,GF是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读材料,解答问题.
已知:锐角△ABC,如图,求作:正方形DEFG,使D、E落在BC边上,F、G分别落在AC、AB边上.
作法:(1)画一个有三个顶点落在△ABC两边上的正方形D1、E1、F1、G1(如图所示);
(2)连接BF,并延长交AC于点F;
(3)过点F作EF⊥BC于点E;
(4)过F作FG∥BC,交AB于点G;
(5)过点G作GD⊥BC于点D;则四边形DEFG即为所求作的正方形.
问题:(1)说明上述所求作四边形DEFG为正方形的理由.
(2)在△ABC中,如果BC=120,BC边上的高为80,求上述正方形DEFG的边长.
(3)若把(2)中的正方形DEFG改为矩形DEFG,且GF=数学公式DG,其他条件不变,此时,GF是多少?
作业宝

查看答案和解析>>

科目:初中数学 来源:广东省月考题 题型:解答题

阅读材料,解答问题。
已知:锐角△ABC,如图,求作:正方形DEFG,使D、E落在BC边上,F、G分别落在AC、AB边上。
作法:
(1)画一个有三个顶点落在△ABC两边上的正方形D1、E1、F1、G1(如图所示);
(2)连结BF,并延长交AC于点F;
(3)过点F作EF⊥BC于点E;
(4)过F作FG//BC,交AB于点G;
(5)过点G作GD⊥BC于点D;则四边形DEFG即为所求作的正方形。
问题:(1)说明上述所求作四边形DEFG为正方形的理由。
(2)在△ABC中,如果BC=120,BC边上的高为80,求上述正方形DEFG的边长;
(3)若把(2)中的正方形DEFG改为矩形DEFG,且GF=DG,其他条件不变,此时,GF是多少?

查看答案和解析>>


同步练习册答案