精英家教网 > 初中数学 > 题目详情
如图所示,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=(    )。


A.
B.
C.6
D.
相关习题

科目:初中数学 来源:同步题 题型:填空题

如图所示,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=(    )。

查看答案和解析>>

科目:初中数学 来源:北大附中题库 七年级数学(上、下学期用)、测试卷二十 第二学期期末检测(二) 题型:022

如图所示,已知AD,AE分别是△ABC的高和中线.AB=6,AC=8,BC=10,∠CAB=90°.则:(1)AD=________.(2)=________.(3)△ACE和△ABE的周长差=________.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知∠CDA=∠AEB=90°,且CD=AE,AD=BE.问:
(1)AC与AB相等吗?清说明理由;
(2)△ABC是什么三角形?请说明理由;
(3)如果AM⊥BC,则AM=
12
BC
吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图(1),在△ABC中,∠C=90°,BC=AC,点D、E分别在BC、AC边上,且CD=CE,连接AD、BE,点O、M、N分别是AB、AD、BE的中点.易证:△OMN是等腰直角三角形.

(1)将图(1)中△CDE绕着点C顺时针旋转90°如图(2),连接AE、BD,O、M、N仍为AB、AD、BE中点,则△OMN是等腰直角三角形的结论是否发生变化?并说明理由.
(2)若△CDE绕着点C顺时针继续旋转至图(3)所示位置时,O、M、N仍为AB、AD、BE中点,试问△OMN是等腰直角三角形的结论是否成立?(直接写出结论)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图(1),在△ABC中,∠C=90°,BC=AC,点D、E分别在BC、AC边上,且CD=CE,连接AD、BE,点O、M、N分别是AB、AD、BE的中点.易证:△OMN是等腰直角三角形.

(1)将图(1)中△CDE绕着点C顺时针旋转90°如图(2),连接AE、BD,O、M、N仍为AB、AD、BE中点,则△OMN是等腰直角三角形的结论是否发生变化?并说明理由.
(2)若△CDE绕着点C顺时针继续旋转至图(3)所示位置时,O、M、N仍为AB、AD、BE中点,试问△OMN是等腰直角三角形的结论是否成立?(直接写出结论)

查看答案和解析>>

科目:初中数学 来源:2012年辽宁省鞍山市铁东区华育中学中考数学一模试卷(解析版) 题型:解答题

已知:如图(1),在△ABC中,∠C=90°,BC=AC,点D、E分别在BC、AC边上,且CD=CE,连接AD、BE,点O、M、N分别是AB、AD、BE的中点.易证:△OMN是等腰直角三角形.

(1)将图(1)中△CDE绕着点C顺时针旋转90°如图(2),连接AE、BD,O、M、N仍为AB、AD、BE中点,则△OMN是等腰直角三角形的结论是否发生变化?并说明理由.
(2)若△CDE绕着点C顺时针继续旋转至图(3)所示位置时,O、M、N仍为AB、AD、BE中点,试问△OMN是等腰直角三角形的结论是否成立?(直接写出结论)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,操作示例:我们可以取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新的图形(如图2).
思考发现:小明在操作后发现,该剪拼方法就是先将△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上.又因为在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD和DF在同一条直线上,那么构成的新图形是一个四边形,进而根据平行四边形的定义,可以得出四边形ABEF是一个平行四边形.
实践探究:
(1)类比图2的剪拼方法,请你分别就图3和图4的两种情形沿一条直线进行剪切,画出剪拼成一个平行四边形的示意图.
联想拓展:小明探究后发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.
(2)如图5的多边形ABCDE中,AE∥CD,若连接AC,则恰有AC∥ED.请你象上面剪法一样沿一条直线进行剪切,将多边形ABCDE拼成一个平行四边形,请你在图5中画出剪拼的示意图,并简要写明剪拼方法(不需证明).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,操作示例:我们可以取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新的图形(如图2).
思考发现:小明在操作后发现,该剪拼方法就是先将△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上.又因为在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD和DF在同一条直线上,那么构成的新图形是一个四边形,进而根据平行四边形的定义,可以得出四边形ABEF是一个平行四边形.
实践探究:
(1)类比图2的剪拼方法,请你分别就图3和图4的两种情形沿一条直线进行剪切,画出剪拼成一个平行四边形的示意图.
联想拓展:小明探究后发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.
(2)如图5的多边形ABCDE中,AE∥CD,若连接AC,则恰有AC∥ED.请你象上面剪法一样沿一条直线进行剪切,将多边形ABCDE拼成一个平行四边形,请你在图5中画出剪拼的示意图,并简要写明剪拼方法(不需证明).
作业宝

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在直角梯形ABCD中,ADBC,∠B=∠A=90°,操作示例:我们可以取直角梯形ABCD的非直角腰CD的中点P,过点P作PEAB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新的图形(如图2).
思考发现:小明在操作后发现,该剪拼方法就是先将△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上.又因为在梯形ABCD中,ADBC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD和DF在同一条直线上,那么构成的新图形是一个四边形,进而根据平行四边形的定义,可以得出四边形ABEF是一个平行四边形.
实践探究:
(1)类比图2的剪拼方法,请你分别就图3和图4的两种情形沿一条直线进行剪切,画出剪拼成一个平行四边形的示意图.
联想拓展:小明探究后发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.
(2)如图5的多边形ABCDE中,AECD,若连接AC,则恰有ACED.请你象上面剪法一样沿一条直线进行剪切,将多边形ABCDE拼成一个平行四边形,请你在图5中画出剪拼的示意图,并简要写明剪拼方法(不需证明).

精英家教网

查看答案和解析>>


同步练习册答案