精英家教网 > 初中数学 > 题目详情
在Rt△ABC中,∠C=90°,则下面关系中不正确的是

A.c=
B.c=
C.a=b·tanA
D.b=a·cosB
相关习题

科目:初中数学 来源:同步题 题型:单选题

在Rt△ABC中,∠C=90°,则下面关系中不正确的是
[     ]
A.c=
B.c=
C.a=b·tanA
D.b=a·cosB

查看答案和解析>>

科目:初中数学 来源: 题型:

将火柴盒ABCD推倒后,如图A所示,AB=CE,BC=EF,∠B=E=90°.
精英家教网
①连接AC、CF,并擦去AD、DC、GF,则得图B,根据图B说明:AC=CF;
②在①说明过程中,你还能得到哪些些结论,把它写下来,写满3个正确结论得2分,每多写一个正确结论加1分,不必说明理由;
③在图B中,请你连接AF,则四边形ACEF为梯形.设Rt△ABC的三边长如图所示,请你用两种不同的方法将梯形ABEF的面积S,用a、b、c表示出来;
④根据③的结论,你猜想Rt△ABC的三边长a、b、c之间有何数量关系?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

将火柴盒ABCD推倒后,如图A所示,AB=CE,BC=EF,∠B=E=90°.

①连接AC、CF,并擦去AD、DC、GF,则得图B,根据图B说明:AC=CF;
②在①说明过程中,你还能得到哪些些结论,把它写下来,写满3个正确结论得2分,每多写一个正确结论加1分,不必说明理由;
③在图B中,请你连接AF,则四边形ACEF为梯形.设Rt△ABC的三边长如图所示,请你用两种不同的方法将梯形ABEF的面积S,用a、b、c表示出来;
④根据③的结论,你猜想Rt△ABC的三边长a、b、c之间有何数量关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

同学们,学习了无理数之后,我们已经把数的领域扩大到了实数的范围,这说明我们的知识越来越丰富了!可是,无理数究竟是一个什么样的数呢?下面让我们在几个具体的图形中认识一下无理数.
(1)如图①△ABC是一个边长为2的等腰直角三角形.它的面积是2,把它沿着斜边的高线剪开拼成如图②的正方形ABCD,则这个正方形的面积也就等于正方形的面积即为2,则这个正方形的边长就是
2
,它是一个无理数.

(2)如图,直径为1个单位长度的圆从原点O沿数轴向右滚动一周,圆上的一点P(滚动时与点O重合)由原点到达点O′,则OO′的长度就等于圆的周长π,所以数轴上点O′代表的实数就是
π
π
,它是一个无理数.

(3)如图,在Rt△ABC中,∠C=90°,AC=2,BC=1,根据勾股定理可求得AB=
5
5
,它是一个无理数.

好了,相信大家对无理数是不是有了更具体的认识了,那么你是也试着在图形中作出两个无理数吧:
1、你能在6×8的网格图中(每个小正方形边长均为1),画出一条长为
10
的线段吗?

2、学习了实数后,我们知道数轴上的点与实数是一一对应的关系.那么你能在数轴上找到表示 -
5
的点吗?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

同学们,学习了无理数之后,我们已经把数的领域扩大到了实数的范围,这说明我们的知识越来越丰富了!可是,无理数究竟是一个什么样的数呢?下面让我们在几个具体的图形中认识一下无理数.
(1)如图①△ABC是一个边长为2的等腰直角三角形.它的面积是2,把它沿着斜边的高线剪开拼成如图②的正方形ABCD,则这个正方形的面积也就等于正方形的面积即为2,则这个正方形的边长就是数学公式,它是一个无理数.

(2)如图,直径为1个单位长度的圆从原点O沿数轴向右滚动一周,圆上的一点P(滚动时与点O重合)由原点到达点O′,则OO′的长度就等于圆的周长π,所以数轴上点O′代表的实数就是______,它是一个无理数.

(3)如图,在Rt△ABC中,∠C=90°,AC=2,BC=1,根据勾股定理可求得AB=______,它是一个无理数.

好了,相信大家对无理数是不是有了更具体的认识了,那么你是也试着在图形中作出两个无理数吧:
1、你能在6×8的网格图中(每个小正方形边长均为1),画出一条长为数学公式的线段吗?

2、学习了实数后,我们知道数轴上的点与实数是一一对应的关系.那么你能在数轴上找到表示 数学公式的点吗?

查看答案和解析>>

科目:初中数学 来源:期末题 题型:解答题

同学们,学习了无理数之后,我们已经把数的领域扩大到了实数的范围,这说明我们的知识越来越丰富了!可是,无理数究竟是一个什么样的数呢?下面让我们在几个具体的图形中认识一下无理数.
(1) 如图①△ABC 是一个边长为2 的等腰直角三角形,它的面积是2 ,把它沿着斜边的高线剪开拼成如图②的正方形ABCD ,则这个正方形的面积也就等于三角形的面积即为2 ,则这个正方形的边长就是,它是一个无理数.
(2)如图,直径为1个单位长度的圆从原点O沿数轴向右滚动一周,圆上的一点P(滚动时与点O重合)由原点到达点O',则OO'的长度就等于圆的周长π,所以数轴上点O'代表的实数就是         ,它是一个无理数.
(3) 如图,在Rt△ABC中,∠C=90°,AC=2,BC=1,根据勾股定理可求得AB=           ,它是一个无理数.
 好了,相信大家对无理数是不是有了更具体的认识了,那么你也试着在图形中作出两个无理数吧:
1、你能在6×8的网格图中(每个小正方形边长均为1),画出一条长为的线段吗?
2、学习了实数后,我们知道数轴上的点与实数是一一对应的关系,那么你能在数轴上找到表示﹣的点吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征.
比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的:
22×23=25,23×24=27,22×26=28,…?2m×2n=2m+n,…?am×an=am+n(m、n都是正整数).我们亦知:
2
3
2+1
3+1
2
3
2+2
3+2
2
3
2+3
3+3
2
3
2+4
3+4
,…
(1)请你根据上面的材料归纳出a、b、c(a>b>0,c>0)之间的一个数学关系式;
(2)试用(1)中你归纳的数学关系式,解释下面生活中的一个现象:“若m克糖水里含有n克糖,再加入k克糖(仍不饱和),则糖水更甜了”;
(3)如图,在Rt△ABC中,∠C=90°,CB=a,CA=b,AD=BE=c(a>b),能否根据这个图形提炼出与(1)中相精英家教网同的关系式并给予证明.

查看答案和解析>>

科目:初中数学 来源:广东省中考真题 题型:解答题

在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征。比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的:(m、n都是正整数),我们亦知:
(1)请你根据上面的材料归纳出a、b、c(a>b>0,c>0)之间的一个数学关系式;
(2)试用(1)中你归纳的数学关系式,解释下面生活中的一个现象:“若m克糖水里含有n克糖,再加入k克糖(仍不饱和),则糖水更甜了”;
(3)如图,在Rt△ABC中,∠C=90°,CB=a,CA=b,AD=BE=c(a>b),能否根据这个图形提炼出与(1)中相同的关系式并给予证明。

查看答案和解析>>

科目:初中数学 来源:2006年广东省佛山市年高中阶段学校招生考试数学试卷(非课改实验区) 题型:047

在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征.

比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的:22×23=25,23×24=27,22×26=28,…2m×2n=2m+n,…am×an=am+n(m,n都是正整数).

我们亦知:,….

(1)请你根据上面的材料归纳出a,b,c(a>b>0,c>0)之间的一个数学关系式;

(2)试用(1)中你归纳的数学关系式,解释下面生活中的一个现象:“若m克糖水里含有n克糖,再加入k克糖(仍不饱和),则糖水更甜了”;

(3)如图,在Rt△ABC中,∠C=90°,CB=a,CA=b,AD=BE=c(a>b).能否根据这个图形提炼出与(1)中同样的关系式?并给予证明.

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《不等式与不等式组》(04)(解析版) 题型:解答题

(2006•佛山)在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征.
比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的:
22×23=25,23×24=27,22×26=28,…?2m×2n=2m+n,…?am×an=am+n(m、n都是正整数).我们亦知:,…
(1)请你根据上面的材料归纳出a、b、c(a>b>0,c>0)之间的一个数学关系式;
(2)试用(1)中你归纳的数学关系式,解释下面生活中的一个现象:“若m克糖水里含有n克糖,再加入k克糖(仍不饱和),则糖水更甜了”;
(3)如图,在Rt△ABC中,∠C=90°,CB=a,CA=b,AD=BE=c(a>b),能否根据这个图形提炼出与(1)中相同的关系式并给予证明.

查看答案和解析>>


同步练习册答案