精英家教网 > 初中数学 > 题目详情
如图,E是正方形ABCD边AD上一点,AE=2cm,DE=6cm,P是对角线BD上的一动点,则AP+PE的最小值是(    )cm。


A.6
B.8
C.10
D.12
相关习题

科目:初中数学 来源: 题型:

如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合).BE的垂直平分线交AB于精英家教网M,交DC于N.
(1)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;
(2)当AE为何值时,四边形ADNM的面积最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合),BE的垂直平分线交AB于精英家教网M,交DC于N,设AE=x.
(1)试用含x的式子表示BM;
(2)求证:MN=BE;
(3)设四边形ADNM的面积为S,求S关于x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点G,则可得结论:①AF=DE,②AF⊥DE。(不需要证明)

【小题1】如图②,若点E、F不是正方形ABCD的边BC、CD的中点,但满足CE=DF。则上面的结论①、②是否仍然成立?(请直接回答“成立”或“不成立”)
【小题2】如图③,若点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE=DF,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由。
【小题3】如图④,在(2)的基础上,连接AE和EF,若点M、N、P、Q分别为AE、EF、FD、AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一种?并写出证明过程。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合).BE的垂直平分线交AB于M,交DC于N.
(1)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;
(2)当AE为何值时,四边形ADNM的面积最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合),BE的垂直平分线交AB于M,交DC于N,设AE=x.
(1)试用含x的式子表示BM;
(2)求证:MN=BE;
(3)设四边形ADNM的面积为S,求S关于x的函数关系式.

查看答案和解析>>

科目:初中数学 来源:同步题 题型:解答题

如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合)。BE的垂直平分线交AB于M,交DC于N
(1)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;
(2)当AE为何值时,四边形ADNM的面积最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在正方形ABCD中,FBC上一点,EAAFAECD的延长线于E,连结EFADG.

(1)求证:⊿ABF ⊿ADE;(2)求证:BF·FC DG·EC;(3)若正方形ABCD的边长为,tg∠BAF,求的面积.

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》常考题集(18):2.6 何时获得最大利润(解析版) 题型:解答题

如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合).BE的垂直平分线交AB于M,交DC于N.
(1)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;
(2)当AE为何值时,四边形ADNM的面积最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(24):2.6 何时获得最大利润(解析版) 题型:解答题

如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合).BE的垂直平分线交AB于M,交DC于N.
(1)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;
(2)当AE为何值时,四边形ADNM的面积最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源:第34章《二次函数》中考题集(28):34.4 二次函数的应用(解析版) 题型:解答题

如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合).BE的垂直平分线交AB于M,交DC于N.
(1)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;
(2)当AE为何值时,四边形ADNM的面积最大?最大值是多少?

查看答案和解析>>


同步练习册答案