精英家教网 > 初中数学 > 题目详情
已知点A(1,2),AC⊥x轴于C,则点C 坐标为

A.(1,0)
B.(2,0)
C.(0,2)
D.(0,1)

相关习题

科目:初中数学 来源: 题型:解答题

已知:如图,平面直角坐标系内的矩形ABCD,顶点A的坐标为(0,3),BC=2AB,P为AD边上一动点(P与点A、D不重合),以点P为圆心作⊙P与对角线AC相切于点F,过P、F作直线L,交BC边于点E,当作业宝点P运动到点P1位置时,直线L恰好经过点B,此时直线的解析式是y=2x+1
(1)BC、AP1的长;
(2)①求过B、P1、D三点的抛物线的解析式;
②求当⊙P与抛物线的对称轴相切时⊙P的半径r的值;
(3)以点E为圆心作⊙E与x轴相切,当直线L把矩形ABCD分成两部分的面积之比为3:5时,则⊙P和⊙E的位置关系如何?并说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年山东省济南市历下区中考数学一模试卷(解析版) 题型:解答题

已知:如图,平面直角坐标系内的矩形ABCD,顶点A的坐标为(0,3),BC=2AB,P为AD边上一动点(P与点A、D不重合),以点P为圆心作⊙P与对角线AC相切于点F,过P、F作直线L,交BC边于点E,当点P运动到点P1位置时,直线L恰好经过点B,此时直线的解析式是y=2x+1
(1)BC、AP1的长;
(2)①求过B、P1、D三点的抛物线的解析式;
②求当⊙P与抛物线的对称轴相切时⊙P的半径r的值;
(3)以点E为圆心作⊙E与x轴相切,当直线L把矩形ABCD分成两部分的面积之比为3:5时,则⊙P和⊙E的位置关系如何?并说明理由.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年冀教版九年级(上)期末数学水平测试卷(二)(解析版) 题型:解答题

已知变量y与x成反比例,它的图象过点A(-2,3).求:
(1)反比例函数解析式
(2)从A(-2,3)向x轴和y轴分别作垂线AB、AC,垂足分别为B、C,则矩形OBAC的面积为______.
(3)当A点的横坐标为-4时,作AB1、AC1分别垂直于x轴、y轴,B1、C1为垂足,则所得矩形OB1AC1的面积是______.
(4)将A点在图象上任意移动到点A′,作A′B′、A′C′分别垂直于x轴、y轴,B′、C′为垂足,则所得矩形OB′A′C′的面积是______.
由此,你可以结合上述信息得出结论是:______.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

已知反比例函数y=数学公式(m为常数)的图象经过点A(-1,6).如图,过点A作直线AC与函数y=数学公式的图象交于点B,与x轴交于点C,且AB=2BC,则点C的坐标为


  1. A.
    (-3,0)
  2. B.
    (-4,0)
  3. C.
    (-5,0)
  4. D.
    (-6,0)

查看答案和解析>>

科目:初中数学 来源:河南省期末题 题型:填空题

已知直线y=﹣x+3与x轴、y轴分别交于A、B两点,点C(0,n)是y轴上一点,把坐标平面沿直线AC折叠,使点B刚好落在x轴上,则点C的坐标是_________

查看答案和解析>>

科目:初中数学 来源: 题型:

已知点A(-1,0),点B(与A不重合)在射线AO上,点C在x轴上方,且△ABC为等边三角形,射线AC交y轴于D.
(1)当AB=4时,则点B、C、D的坐标分别是:B:
(3,0)
(3,0)
,C:
(1,2
3
(1,2
3
,D:
(0,
3
(0,
3

(2)若AB=m(m>0),则点B、C的坐标分别是:B:
(m-1,0)
(m-1,0)
,C:
1
2
m-1,
3
2
m)
1
2
m-1,
3
2
m)

当C、D不重合时,请根据m的不同取值,对于过B、C、D三点的二次函数开口方向作出判断,直接写出结论(不要求证明).
(3)是否存在点B,使S△BCD=
3
3
16
?若存在,求出点B的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:同步题 题型:单选题

已知点A(1,2),AC⊥x轴于C,则点C 坐标为
[     ]

A.(1,0)
B.(2,0)
C.(0,2)
D.(0,1)

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,已知在直角梯形AOBC中,AC∥OB,CB⊥OB,OB=18,BC=12,AC=9,对角线OC、AB交于点D,点E、F、G分别是CD、BD、BC的中点,以O为原点,直线OB为x轴建立平面直角坐标系,则G、E、D、F四个点中与点A在同一反比例函数图象上的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知菱形ABCD的两条对角线AC与BD交于平面直角坐标系的原点,且AD∥x轴,点A的坐标为(-2,3),则点B的坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在直角梯形AOBC中,AC∥OB,CB⊥OB,OB=18,BC=12,AC=9,对角线OC、AB交于点D,点E、F、G分别是CD、BD、BC的中点,以O为原点,直线OB为x轴建立平面直角坐标系,则G、E、D、F四个点中与点A在同一反比例函数图象上的是点
(18,6)
(18,6)

查看答案和解析>>


同步练习册答案