精英家教网 > 高中数学 > 题目详情
某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:(  )
A.
1
10
B.
1
20
C.
1
40
D.
1
120
相关习题

科目:高中数学 来源: 题型:

某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:(  )
A、
1
10
B、
1
20
C、
1
40
D、
1
120

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其他班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为(    )

A.                 B.                C.               D.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其他班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为(  )

A.                                         B.

C.                                        D.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为           (  )

     A.           B.            C.                D.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为    (  )

     A.           B.            C.                D.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为    (  )

     A.           B.            C.                D.

查看答案和解析>>

科目:高中数学 来源:2013届四川省高二5月月考理科数学试卷(解析版) 题型:选择题

 某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为(    )

A.      B.     C.     D. 

 

查看答案和解析>>

科目:高中数学 来源:重庆 题型:单选题

某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:(  )
A.
1
10
B.
1
20
C.
1
40
D.
1
120

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省襄阳市襄州、枣阳、宜城、曾都一中联考高二(上)期中数学试卷(解析版) 题型:选择题

某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省襄阳市襄州、枣阳、宜城、曾都一中联考高二(上)期中数学试卷(解析版) 题型:选择题

某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:( )
A.
B.
C.
D.

查看答案和解析>>