精英家教网 > 高中数学 > 题目详情
函数f(x)=
1
x+1
的图象与直线x=0,x=1以及x轴围成的曲边梯形的面积是(  )
A.0B.1C.eD.ln2
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
1
x+1
的图象与直线x=0,x=1以及x轴围成的曲边梯形的面积是(  )
A、0B、1C、eD、ln2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=
1
x+1
的图象与直线x=0,x=1以及x轴围成的曲边梯形的面积是(  )
A.0B.1C.eD.ln2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=p(x-
1
x
)-2lnx,g(x)=
2e
x
.(p是实数,e是自然对数的底数)
(1)若直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求p的值;
(2)若f(x)在其定义域内为单调函数,求p的取值范围;
(3)若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=p(x-
1
x
)-2lnx,g(x)=
2e
x
(p是实数,e为自然对数的底数)
(1)若f(x)在其定义域内为单调函数,求p的取值范围;
(2)若直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求p的值;
(3)若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=p(x-
1
x
)-2lnx,g(x)=
2e
x
(p是实数,e为自然对数的底数)
(1)若f(x)在其定义域内为单调函数,求p的取值范围;
(2)若直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求p的值;
(3)若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:
①函数y=
x-1
x+1
的单调区间是(-∞,-1)∪(-1,+∞).
②函数f(x)=|x|•(|x|+|2-x|)-1有2个零点.
③已知函数f(x)=ex-mx+1的图象为曲线C,若曲线C存在与直线y=
1
2
x垂直的切线,则实数m的取值范围是m>2.
④若函数f(x)=
(3a-1)x+4a(x<1)
logax    (x≥1)
对任意的x1≠x2都有
f(x2)-f(x1)
x2-x1
<0
,则实数a的取值范围是(-
1
7
,1].
其中正确命题的序号为
②③
②③

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x>0,函数f(x)=-x2+2x+t-1,g(x)=x+
1x

(1)求过点(1,f(1))与y=f(x)图象相切的直线方程
(2)若g(x)=m有零点,求m的取值范围;
(3)确定实数t的取值范围,使得g(x)-f(x)=0有两个相异实根.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知x>0,函数f(x)=-x2+2x+t-1,g(x)=x+
1
x

(1)求过点(1,f(1))与y=f(x)图象相切的直线方程
(2)若g(x)=m有零点,求m的取值范围;
(3)确定实数t的取值范围,使得g(x)-f(x)=0有两个相异实根.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•烟台一模)设函数f(x)=m(x-
1
x
)-21nx,g(x)=
2e
x
(m是实数,e是自然对数的底数).
(1)当m=2e时,求f(x)+g(x)的单调区间;
(2)若直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列四种说法:
①函数y=
1-3x
的值域是{y|y≥0};
②若集合A={x|x2-1=0},B={x|lg(x2-2)=lgx},则A∩B={-1};
③函数y=f(x)与函数y=f(-x)的图象关于直线x=0对称;
④已知A=B=R,对应法则f:x→y=
1
x+1
,则对应f是从A到B的映射.
其中你认为不正确的是
①②④
①②④

查看答案和解析>>


同步练习册答案