精英家教网 > 初中数学 > 题目详情
观察图(1)与(2)中的两个三角形,可把(1)中的三角形的三个顶点,怎样变化就得到(2)中的三角形的三个顶点(  )
魔方格
A.每个点的横坐标加上2B.每个点的纵坐标加上2
C.每个点的横坐标减去2D.每个点的纵坐标减去2
相关习题

科目:初中数学 来源: 题型:

6、观察图(1)与(2)中的两个三角形,可把(1)中的三角形的三个顶点,怎样变化就得到(2)中的三角形的三个顶点(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

观察图(1)与(2)中的两个三角形,可把(1)中的三角形的三个顶点,怎样变化就得到(2)中的三角形的三个顶点(  )
精英家教网
A.每个点的横坐标加上2B.每个点的纵坐标加上2
C.每个点的横坐标减去2D.每个点的纵坐标减去2

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

观察图(1)与(2)中的两个三角形,可把(1)中的三角形的三个顶点,怎样变化就得到(2)中的三角形的三个顶点


  1. A.
    每个点的横坐标加上2
  2. B.
    每个点的纵坐标加上2
  3. C.
    每个点的横坐标减去2
  4. D.
    每个点的纵坐标减去2

查看答案和解析>>

科目:初中数学 来源: 题型:

古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.观察下面的点阵图和相应的等式,探究其中的规律:
(1)下图反映了任何一个三角形数是如何得到的,认真观察,并在④后面的横线上写出相应的等式;

①1=1
②1+2=
(1+2)×2
2
=3
③1+2+3=
(1+3)×3
2
=6
1+2+3+4=
(1+4)×4
2
1+2+3+4=
(1+4)×4
2

(2)通过猜想,写出(1)中与第九个点阵相对应的等式
1+2+3+…+9=
(1+9)×9
2
1+2+3+…+9=
(1+9)×9
2

(3)从下图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.结合(1)观察下列点阵图,并在⑤看面的黄线上写出相应的等式.

①1=12
②1+3=22
③3+6=32
④6+10=42
10+15=52
10+15=52

(4)通过猜想,写出(3)中与第n个点阵相对应的等式
(1+n-1)(n-1)
2
+
(1+n)×n
2
=n2
(1+n-1)(n-1)
2
+
(1+n)×n
2
=n2

(5)判断225是不是正方形数,如果不是,说明理由;如果是,225可以看作哪两个相邻的“三角形数”之和?

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案.
例如,求1+2+3+4+…+n的值,其中n是正整数.
对于这个求和问题,如果采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对n的奇偶性进行讨论.
如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观.现利用图形的性质来求1+2+3+4+…+n的值,方案如下:如图,斜线左边的三角形图案是由上到下每层依次分别为1,2,3,…,n个小圆圈排列组成的.而组成整个三角形小圆圈的个数恰为所求式子1+2+3+4+…+n的值.为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形.此时,组成平行四边形的小圆圈共有n行,每行有(n+1)个小圆圈,所以组成平行四边形小圆圈的总个数为n(n+1)个,因此,组成一个三角形小圆圈的个数为
n(n+1)
2
,即1+2+3+4+…+n=
n(n+1)
2
精英家教网
(1)仿照上述数形结合的思想方法,设计相关图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)
(2)试设计另外一种图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)

查看答案和解析>>

科目:初中数学 来源:期中题 题型:解答题

我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联我我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.
数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案. 例如:求1+2+3+4+…+n的值,其中n是正整数.
对于这个求和问题,如果采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对n的奇偶性进行讨论.
如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观.现利用图形的性质来求1+2+3+4+…+n的值,方案如下:如图,斜线左边的三角形图案是由上到下每层依次分别为1,2,3,…,n个小圆圈排列组成的.而组成整个三角形小圆圈的个数恰为所求式子1+2+3+4+…+n的值.为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形.此时,组成平行四边形的小圆圈共有n行,每行有(n+1)个小圆圈,所以组成平行四边形小圆圈的总个数为n(n+1)个,因此,组成一个三角形小圆圈的个数为,即1+2+3+4+…+n=
(1)仿照上述数形结合的思想方法,设计相关图形,求1+3+5+7+…+(2n﹣1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)
(2)试设计另外一种图形,求1+3+5+7+…+(2n﹣1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(1)完成下面的证明:
已知:如图1,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD.
求证:∠EGF=90°.
证明:∵HG∥AB,(已知) 
∴∠1=∠3. (
两直线平行,内错角相等
两直线平行,内错角相等
 )
又∵HG∥CD,(已知)
∴∠2=∠4.  (
两直线平行,内错角相等
两直线平行,内错角相等

∵AB∥CD,(已知)
∴∠BEF+
∠EFD
∠EFD
=180°.(
两直线平行,同旁内角互补
两直线平行,同旁内角互补

又∵EG平分∠BEF,(已知)
∴∠1=
1
2
BEH
BEH
.(
角平分线定义
角平分线定义

又∵FG平分∠EFD,(已知)
∴∠2=
1
2
EFD
EFD
.(
角平分线定义
角平分线定义

∴∠1+∠2=
1
2
∠BEH
∠BEH
+
∠EFD
∠EFD
).
∴∠1+∠2=90°.
∴∠3+∠4=90°.(
等量代换
等量代换
).即∠EGF=90°.
(2)如图2,已知∠ACB=90°,那么∠A的余角是哪个角呢?答:
∠B
∠B

小明用三角尺在这个三角形中画了一条高CD(点D是垂足),得到图3,
①请你帮小明在图中画出这条高;
②在图中,小明通过仔细观察、认真思考,找出了三对余角,你能帮小明把它们写出来吗?答:a
∠ACD与∠BCD
∠ACD与∠BCD
;b
∠A与∠ACD
∠A与∠ACD
;c
∠B与∠BCD
∠B与∠BCD

③∠ACB,∠ADC,∠CDB都是直角,所以∠ACB=∠ADC=∠CDB,小明还发现了另外两对相等的角,请你也仔细地观察、认真地思考分析,试一试,能发现吗?把它们写出来,并请说明理由.
(3)在直角坐标系中,第一次将△OAB变换成OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).
①观察每次变换前后的三角形有何变化,找出规律,按此规律再将△OA3B3变换成△OA4B4,则A4的坐标为
(16,3)
(16,3)
,B4的坐标为
(32,0)
(32,0)

②按以上规律将△OAB进行n次变换得到△AnBn,则可知An的坐标为
(2n,3)
(2n,3)
,Bn的坐标为
(2n+1,0)
(2n+1,0)

③可发现变换的过程中A、A1、A2、…、An纵坐标均为
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:044

我国著名数学家华罗庚曾说过:撌?毙问鄙僦惫郏?紊偈?蹦讶胛ⅲ皇?谓岷习侔愫茫?衾敕旨彝蚴滦輸.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.

数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案.

例如,求1234+…+n的值,其中n是正整数.

对于这个求和问题,如果采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对n的奇偶性进行讨论.

如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观.现利用图形的性质来求1234+…+n 的值,方案如下:如图,斜线左边的三角形图案是由上到下每层依次分别为123,…,n个小圆圈排列组成的.而组成整个三角形小圆圈的个数恰为所求式子1234+…+n的值.为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形.此时,组成平行四边形的小圆圈共有n行,每行有(n1)个小圆圈,所以组成平行四边形小圆圈的总个数为nn1)个,因此,组成一个三角形小圆圈的个数为,即1234+…+n

(1)仿照上述数形结合的思想方法,设计相关图形,求1357+…+(2n1)的值,其中 n 是正整数.(要求:画出图形,并利用图形做必要的推理说明)

(2)试设计另外一种图形,求1357+…+(2n1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.

数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案.

例如,求1+2+3+4+…+n的值,其中n是正整数.

对于这个求和问题,如果采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对n的奇偶性进行讨论.

如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观.现利用图形的性质来求1+2+3+4+…+n 的值,方案如下:如图,斜线左边的三角形图案是由上到下每层依次分别为1,2,3,…,n个小圆圈排列组成的.而组成整个三角形小圆圈的个数恰为所求式子1+2+3+4+…+n的值.为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形.此时,组成平行四边形的小圆圈共有n行,每行有(n+1)个小圆圈,所以组成平行四边形小圆圈的总个数为n(n+1)个,因此,组成一个三角形小圆圈的个数为,即1+2+3+4+…+n=

(1)仿照上述数形结合的思想方法,设计相关图形,求1+3+5+7+…+(2n-1)的值,其中 n 是正整数.(要求:画出图形,并利用图形做必要的推理说明)

(2)试设计另外一种图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)

查看答案和解析>>

科目:初中数学 来源: 题型:044

我国著名数学家华罗庚曾说过:数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.

数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案.

例如,求1234n的值,其中n是正整数.

对于这个求和问题,如果采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对n的奇偶性进行讨论.

如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观.现利用图形的性质来求1234n 的值,方案如下:如图,斜线左边的三角形图案 是由上到下每层依次分别为123n个小圆圈排列组成的.而组成整个三角形小圆圈的个数恰为所求式子1234n的值.为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形.此时,组成平行四边形的小圆圈共有n行,每行有(n1)个小圆圈,所以组成平行四边形小圆圈的总个数为n(n1)个,因此,组成一个三角形小圆圈的个数为,即

(1)仿照上述数形结合的思想方法,设计相关图形,求1357(2n1)的值,其中 n 是正整数.(要求:画出图形,并利用图形做必要的推理说明)

(2)试设计另外一种图形,求1357(2n1)的值,其中n是正整数.(要求:画出图形,并利用图形做必要的推理说明)

查看答案和解析>>


同步练习册答案