精英家教网 > 初中数学 > 题目详情
P(a,b)是第二象限内一点,则关于x轴的对称点P′(b,a)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限
相关习题

科目:初中数学 来源: 题型:

2、P(a,b)是第二象限内一点,则关于x轴的对称点P′(b,a)位于(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

P(a,b)是第二象限内一点,则关于x轴的对称点P′(b,a)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

P(a,b)是第二象限内一点,则关于x轴的对称点P′(b,a)位于


  1. A.
    第一象限
  2. B.
    第二象限
  3. C.
    第三象限
  4. D.
    第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读下列材料,回答问题.
材料一:人们习惯把形如数学公式的函数称为“根号函数”,这类函数的图象关于原点中心对称.
材料二:对任意的实数a、b而言,a2-2ab+b2=(a-b)2≥0,即a2+b2≥2ab.
易知当a=b时,(a-b)2=0,即:a2-2ab+b2=0,所以a2+b2=2ab.
若a≠b,则(a-b)2>0,所以a2+b2>2ab.
材料三:如果一个数的平方等于m,那么这个数叫做m的平方根(square root).一个正数有两个平方根,它们互为相反数.0的平方根是0,负数没有平方根.
问题:
(1)若“根号函数”数学公式在第一象限内的大致图象如图所示,试在网格内画出该函数在第三象限内的大致图象;
(2)请根据材料二、三给出的信息,试说明:当x>0时,函数数学公式的最小值为2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

定义1:在△ABC中,若顶点A,B,C按逆时针方向排列,则规定它的面积为“有向面积”;若顶点A,B,C按顺时针方向排列,则规定它的面积的相反数为△ABC的“有向面积”.“有向面积”用表示,例如图1中,,图2中,.
定义2:在平面内任取一个△ABC和点P(点P不在△ABC的三边所在直线上),称有序数组()为点P关于△ABC的“面积坐标”,记作,例如图3中,菱形ABCD的边长为2,,则,点G关于△ABC的“面积坐标”.在图3中,我们知道,利用“有向面积”,我们也可以把上式表示为:.
应用新知:
(1)如图4,正方形ABCD的边长为1,则        ,点D关于△ABC的“面积坐标”是       ;探究发现:
(2)在平面直角坐标系中,点
①若点P是第二象限内任意一点(不在直线AB上),设点P关于的“面积坐标”为
试探究之间有怎样的数量关系,并说明理由;
②若点是第四象限内任意一点,请直接写出点P关于的“面积坐标”(用x,y表示);
解决问题:
(3)在(2)的条件下,点,点Q在抛物线上,求当的值最小时,点Q的横坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

定义1:在△ABC中,若顶点A,B,C按逆时针方向排列,则规定它的面积为“有向面积”;若顶点A,B,C按顺时针方向排列,则规定它的面积的相反数为△ABC的“有向面积”.“有向面积”用表示,例如图1中,,图2中,.
定义2:在平面内任取一个△ABC和点P(点P不在△ABC的三边所在直线上),称有序数组()为点P关于△ABC的“面积坐标”,记作,例如图3中,菱形ABCD的边长为2,,则,点G关于△ABC的“面积坐标”.在图3中,我们知道,利用“有向面积”,我们也可以把上式表示为:.
应用新知:
(1)如图4,正方形ABCD的边长为1,则        ,点D关于△ABC的“面积坐标”是       ;探究发现:
(2)在平面直角坐标系中,点
①若点P是第二象限内任意一点(不在直线AB上),设点P关于的“面积坐标”为
试探究之间有怎样的数量关系,并说明理由;
②若点是第四象限内任意一点,请直接写出点P关于的“面积坐标”(用x,y表示);
解决问题:
(3)在(2)的条件下,点,点Q在抛物线上,求当的值最小时,点Q的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平行四边形ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程精英家教网x2-7x+12=0的两个根,且OA>OB.
(1)则点C的坐标是
 
,点D的坐标是
 

(2)若将此平行四边形ABCD沿x轴正方向向右平移3个单位,沿y轴正方向向上平移2个单位,则点C的坐标是
 
,点D的坐标是
 

(3)若将平行四边形ABCD平移到第一象限后,点B的坐标是(a,b),则点C的坐标是
 
,点D的坐标是
 

(4)若点M在平面直角坐标系内,则在上图的直线AB上,并且在第一、第二象限内是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平行四边形ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程的两个根,且

(1)则点C的坐标是_____________,点D的坐标是__________;

(2)若将此平行四边形ABCD沿x轴正方向向右平移3个单位,沿y轴正方向向上平移2个单位,则点C的坐标是____________,点D的坐标是_________;

(3)若将平行四边形ABCD平移到第一象限后,点B的坐标是(a,b),则点C的坐标是________,点D的坐标是_______;

(4)若点M在平面直角坐标系内,则在上图的直线AB上,并且在第一、第二象限内是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线y=0.75x+6与x轴、y轴分别交于点E、F,点E的坐标为(-8,0),点P(x,y)是第二象限内的直线上的一个动点,则△OPE的面积S与x的函数关系式为
S=4x(0<x≤6)
S=4x(0<x≤6)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

作业宝如图,直线y=0.75x+6与x轴、y轴分别交于点E、F,点E的坐标为(-8,0),点P(x,y)是第二象限内的直线上的一个动点,则△OPE的面积S与x的函数关系式为________.

查看答案和解析>>


同步练习册答案