精英家教网 > 初中数学 > 题目详情
若在同一平面上A、B、C三点不共线,则以其为顶点的平行四边形共有(  )
A.1个B.2个C.3个D.4个
相关习题

科目:初中数学 来源: 题型:

6、若在同一平面上A、B、C三点不共线,则以其为顶点的平行四边形共有(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若在同一平面上A、B、C三点不共线,则以其为顶点的平行四边形共有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

若在同一平面上A、B、C三点不共线,则以其为顶点的平行四边形共有


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个

查看答案和解析>>

科目:初中数学 来源:同步题 题型:单选题

若在同一平面上A、B、C三点不共线,则以其为顶点的平行四边形共有
[      ]
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在同一平面内,将两个全等的等腰直角三角形ABC和ADE摆放在一起,A为公共顶点,∠BAC=∠ADE=90°,它们的斜边长为2,若△ABC固定不动,△ADE绕点A旋转,AE、AD与边BC的交点分别为F、G (点F不与点C重合,点G不与点B重合),设BF=a,CG=b.
(1)请在图(1)中找出两对相似但不全等的三角形,并选取其中一对进行证明.
(2)求b与a的函数关系式,直接写出自变量a的取值范围.
(3)以△ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).若BG=CF,求出点G的坐标,猜想线段BG、FG和CF之间的关系,并通过计算加以验证.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在同一平面内,将两个全等的等腰直角三角形ABC和ADE摆放在一起,A为公共顶点,∠BAC=∠ADE=90°,它们的斜边长为2,若△ABC固定不动,△ADE绕点A旋转,AE、AD与边BC的交点分别为F、G (点F不与点C重合,点G不与点B重合),设BF=a,CG=b.
(1)请在图(1)中找出两对相似但不全等的三角形,并选取其中一对进行证明.
(2)求b与a的函数关系式,直接写出自变量a的取值范围.
(3)以△ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).若BG=CF,求出点G的坐标,猜想线段BG、FG和CF之间的关系,并通过计算加以验证.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在同一平面内,将两个全等的等腰直角三角形ABCADE摆放在一起,A为公共顶点,∠BAC=∠ADE=90°,它们的斜边长为2,若△ABC固定不动,△ADE绕点A旋转,AEAD与边BC的交点分别为FG (点F不与点C重合,点G不与点B重合),设BF=aCG=b

(1)请在图(1)中找出两对相似但不全等的三角形,并选取其中一对进行证明.

(2)求ba的函数关系式,直接写出自变量a的取值范围.

(3)以△ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).若BG=CF,求出点G的坐标,猜想线段BGFGCF之间的关系,并通过计算加以验证.

  

 


查看答案和解析>>

科目:初中数学 来源:2010-2011学年广东省广州市天河区九年级(上)期末数学试卷(解析版) 题型:解答题

如图,在同一平面内,将两个全等的等腰直角三角形ABC和ADE摆放在一起,A为公共顶点,∠BAC=∠ADE=90°,它们的斜边长为2,若△ABC固定不动,△ADE绕点A旋转,AE、AD与边BC的交点分别为F、G (点F不与点C重合,点G不与点B重合),设BF=a,CG=b.
(1)请在图(1)中找出两对相似但不全等的三角形,并选取其中一对进行证明.
(2)求b与a的函数关系式,直接写出自变量a的取值范围.
(3)以△ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).若BG=CF,求出点G的坐标,猜想线段BG、FG和CF之间的关系,并通过计算加以验证.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.
(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明;
(2)求m与n的函数关系式,直接写出自变量n的取值范围;
(3)以△ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BD2+CE2=DE2
(4)在旋转过程中,(3)中的等量关系BD2+CE2=DE2是否始终成立?若成立,请证明;若不成立,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面内画了若干个点,任意三点都不在同一直线上,连接任意两点共得到直线45条.
(1)问该平面上共画了多少个点?
(2)解决该问题是否得到了一个一元二次方程?如果不是,指出得到的方程的名称;如果是,求出这个方程的两根之和、两根之积,并求出两根的倒数和.

查看答案和解析>>


同步练习册答案